Gronewold Andrew D, Qian Song S, Wolpert Robert L, Reckhow Kenneth H
Nicholas School of the Environment, Department of Statistical Science, Box 90328, Duke University, Durham, NC 27708-0328, USA.
Water Res. 2009 Jun;43(10):2688-98. doi: 10.1016/j.watres.2009.02.034. Epub 2009 Mar 5.
Water resource management decisions often depend on mechanistic or empirical models to predict water quality conditions under future pollutant loading scenarios. These decisions, such as whether or not to restrict public access to a water resource area, may therefore vary depending on how models reflect process, observation, and analytical uncertainty and variability. Nonetheless, few probabilistic modeling tools have been developed which explicitly propagate fecal indicator bacteria (FIB) analysis uncertainty into predictive bacterial water quality model parameters and response variables. Here, we compare three approaches to modeling variability in two different FIB water quality models. We first calibrate a well-known first-order bacterial decay model using approaches ranging from ordinary least squares (OLS) linear regression to Bayesian Markov chain Monte Carlo (MCMC) procedures. We then calibrate a less frequently used empirical bacterial die-off model using the same range of procedures (and the same data). Finally, we propose an innovative approach to evaluating the predictive performance of each calibrated model using a leave-one-out cross-validation procedure and assessing the probability distributions of the resulting Bayesian posterior predictive p-values. Our results suggest that different approaches to acknowledging uncertainty can lead to discrepancies between parameter mean and variance estimates and predictive performance for the same FIB water quality model. Our results also suggest that models without a bacterial kinetics parameter related to the rate of decay may more appropriately reflect FIB fate and transport processes, regardless of how variability and uncertainty are acknowledged.
水资源管理决策通常依赖于机理模型或经验模型,以预测未来污染物负荷情景下的水质状况。因此,这些决策,比如是否限制公众进入水资源区域,可能会因模型如何反映过程、观测以及分析的不确定性和变异性而有所不同。尽管如此,很少有概率建模工具被开发出来,能够将粪便指示菌(FIB)分析的不确定性明确地传播到预测性细菌水质模型参数和响应变量中。在此,我们比较了在两种不同的FIB水质模型中对变异性进行建模的三种方法。我们首先使用从普通最小二乘法(OLS)线性回归到贝叶斯马尔可夫链蒙特卡罗(MCMC)程序等一系列方法,对一个著名的一阶细菌衰减模型进行校准。然后,我们使用相同范围的程序(以及相同的数据),对一个较少使用的经验性细菌死亡模型进行校准。最后,我们提出一种创新方法,通过留一法交叉验证程序评估每个校准模型的预测性能,并评估所得贝叶斯后验预测p值的概率分布。我们的结果表明,对于同一个FIB水质模型,承认不确定性的不同方法可能会导致参数均值和方差估计以及预测性能之间出现差异。我们的结果还表明,无论如何承认变异性和不确定性,没有与衰减速率相关的细菌动力学参数的模型可能更恰当地反映FIB的归宿和迁移过程。