Great Lakes Environmental Research Laboratory, NOAA, Ann Arbor, MI 48108, USA.
Water Res. 2011 Jan;45(2):652-64. doi: 10.1016/j.watres.2010.08.029. Epub 2010 Aug 25.
Assessing the potential threat of fecal contamination in surface water often depends on model forecasts which assume that fecal indicator bacteria (FIB, a proxy for the concentration of pathogens found in fecal contamination from warm-blooded animals) are lost or removed from the water column at a certain rate (often referred to as an "inactivation" rate). In efforts to reduce human health risks in these water bodies, regulators enforce limits on easily-measured FIB concentrations, commonly reported as most probable number (MPN) and colony forming unit (CFU) values. Accurate assessment of the potential threat of fecal contamination, therefore, depends on propagating uncertainty surrounding "true" FIB concentrations into MPN and CFU values, inactivation rates, model forecasts, and management decisions. Here, we explore how empirical relationships between FIB inactivation rates and extrinsic factors might vary depending on how uncertainty in MPN values is expressed. Using water samples collected from the Neuse River Estuary (NRE) in eastern North Carolina, we compare Escherichia coli (EC) and Enterococcus (ENT) dark inactivation rates derived from two statistical models of first-order loss; a conventional model employing ordinary least-squares (OLS) regression with MPN values, and a novel Bayesian model utilizing the pattern of positive wells in an IDEXX Quanti-Tray®/2000 test. While our results suggest that EC dark inactivation rates tend to decrease as initial EC concentrations decrease and that ENT dark inactivation rates are relatively consistent across different ENT concentrations, we find these relationships depend upon model selection and model calibration procedures. We also find that our proposed Bayesian model provides a more defensible approach to quantifying uncertainty in microbiological assessments of water quality than the conventional MPN-based model, and that our proposed model represents a new strategy for developing robust relationships between environmental factors and FIB inactivation rates, and for reducing uncertainty in water resource management decisions.
评估地表水粪便污染的潜在威胁通常依赖于模型预测,这些预测假设粪便指示菌(FIB,是温血动物粪便污染中病原体浓度的替代物)以一定的速率从水柱中丧失或去除(通常称为“失活”率)。为了降低这些水体中的人类健康风险,监管机构对易于测量的 FIB 浓度实施限制,通常以最可能数(MPN)和集落形成单位(CFU)值报告。因此,准确评估粪便污染的潜在威胁取决于将“真实”FIB 浓度的不确定性传播到 MPN 和 CFU 值、失活率、模型预测和管理决策中。在这里,我们探讨了 FIB 失活率与外在因素之间的经验关系如何因 MPN 值的不确定性表达而有所不同。我们使用从北卡罗来纳州东部的 Neuse 河口采集的水样,比较了两种一阶损失统计模型中得出的大肠杆菌(EC)和肠球菌(ENT)暗失活率;一种是使用 MPN 值的普通最小二乘法(OLS)回归的传统模型,另一种是利用 IDEXX Quanti-Tray®/2000 测试中阳性井模式的新贝叶斯模型。虽然我们的结果表明,EC 暗失活率随着初始 EC 浓度的降低而降低,并且 ENT 暗失活率在不同的 ENT 浓度下相对稳定,但我们发现这些关系取决于模型选择和模型校准程序。我们还发现,与传统的基于 MPN 的模型相比,我们提出的贝叶斯模型为量化水质微生物评估中的不确定性提供了一种更合理的方法,并且我们提出的模型代表了一种新的策略,可以在环境因素和 FIB 失活率之间建立稳健的关系,并减少水资源管理决策中的不确定性。