Suppr超能文献

多元统计技术在水文地球化学研究中的应用——以印度 Brahmani-Koel 河流域为例。

Application of multivariate statistical techniques in hydrogeochemical studies--a case study: Brahmani-Koel River (India).

机构信息

Department of Chemistry, S. C. S. (Autonomous) College, Puri, 752001, Orissa, India.

出版信息

Environ Monit Assess. 2010 May;164(1-4):297-310. doi: 10.1007/s10661-009-0893-x. Epub 2009 Apr 25.

Abstract

This study presents the usefulness of multivariate statistical techniques, such as correlation matrix, cluster analysis, and factor analysis, for the evaluation and interpretation of complex water quality data sets of Brahmani-Koel river along the Rourkela Industrial Complex, India, and the apportionment of pollution sources/factors. The correlation study suggests that dissolved heavy metals, biochemical oxygen demand (BOD), and chemical oxygen demand (COD) are contributed by anthropogenic sources. The results of R-mode factor analyses revealed that anthropogenic contributions are responsible for increase in metals of the river water, which is mainly responsible for contamination of the river. It also reflected that the level of pollution in the river was very high. The factor score plot and loading plot have been drawn, which indicate that the polluted stations are identified by the heavy metals. The relationships among the stations are highlighted by cluster analysis, represented in dendograms to categorize different levels of contamination. An attempt has been made to study the degree of contamination of the river waters by using a tool like enrichment ratio (ER). The ER for heavy metal concentrations concluded that metals like Ni, Co, Cr, and Fe are showing high enrichment with respect to global background and metal ions like Fe, Mn, Cu, and Zn show high enrichment with respect to local background.

摘要

本研究提出了多元统计技术的有用性,如相关矩阵、聚类分析和因子分析,用于评估和解释印度罗哈利亚工业综合体沿布拉马尼-高勒河的复杂水质数据集,并分配污染源/因素。相关研究表明,溶解重金属、生化需氧量(BOD)和化学需氧量(COD)是由人为来源贡献的。R 型因子分析的结果表明,人为因素导致河水中金属含量增加,这是造成河水污染的主要原因。它还反映出河流的污染水平非常高。绘制了因子得分图和载荷图,表明受污染的站点是由重金属识别的。通过聚类分析突出了站点之间的关系,以树状图表示不同程度的污染。尝试使用富集比(ER)等工具研究河流水体的污染程度。重金属浓度的 ER 表明,Ni、Co、Cr 和 Fe 等金属相对于全球背景显示出高度富集,而 Fe、Mn、Cu 和 Zn 等金属离子相对于当地背景显示出高度富集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验