Suppr超能文献

血细胞计数分析作为哮喘表型的鉴别标志物。

Hematocytometry analysis as discriminative marker for asthma phenotypes.

作者信息

Velthove Karin J, van Solinge Wouter W, Lammers Jan-Willem J, Leufkens Hubert G M, Schweizer René C, Bracke Madelon

机构信息

Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

出版信息

Clin Chem Lab Med. 2009;47(5):573-8. doi: 10.1515/CCLM.2009.139.

Abstract

BACKGROUND

There is an increasing demand for easy to measure biomarkers in clinical practice. We created the relational database Utrecht Patient Oriented Database (UPOD) to develop tools for identifying new biomarkers for disease. In this study, we used UPOD to identify better biomarkers for discriminating different asthma phenotypes.

METHODS

We performed a prospective study at the University Medical Center (UMC) Utrecht using blood from patients with asthma and a healthy reference group. Since asthma is an inflammatory disease, absolute leukocyte counts and leukocyte differential parameters were analyzed using raw data files and a logistic regression model.

RESULTS

We compared 17 difficult-to-treat asthma (DTA) cases, 13 non-difficult-to-treat asthma cases, and 19 healthy volunteers. Absolute leukocyte counts and differential parameters for leukocytes were able to discriminate asthma patients from healthy volunteers. However, among patients with asthma, difficult-to-treat cases could be more accurately defined with a neutrophil morphology change (OR 8.0; 95% CI 1.5-42.0), compared to the absolute neutrophil count (OR 4.0; 95% CI 0.8-21.0).

CONCLUSIONS

In this asthma patient population, we were able to define asthma phenotypes more precisely using neutrophil morphology parameters, compared to absolute counts. Using UPOD with differential parameters, it is possible to conduct larger scale biomarker studies, combining clinical, laboratory medicine, and epidemiological techniques.

摘要

背景

临床实践中对易于测量的生物标志物的需求日益增加。我们创建了关系数据库乌得勒支患者导向数据库(UPOD),以开发用于识别疾病新生物标志物的工具。在本研究中,我们使用UPOD来识别用于区分不同哮喘表型的更好的生物标志物。

方法

我们在乌得勒支大学医学中心(UMC)进行了一项前瞻性研究,使用哮喘患者的血液和健康对照组。由于哮喘是一种炎症性疾病,使用原始数据文件和逻辑回归模型分析了绝对白细胞计数和白细胞分类参数。

结果

我们比较了17例难治性哮喘(DTA)病例、13例非难治性哮喘病例和19名健康志愿者。绝对白细胞计数和白细胞分类参数能够区分哮喘患者和健康志愿者。然而,在哮喘患者中,与绝对中性粒细胞计数(比值比4.0;95%可信区间0.8 - 21.0)相比,中性粒细胞形态变化(比值比8.0;95%可信区间1.5 - 42.0)能更准确地定义难治性病例。

结论

在这个哮喘患者群体中,与绝对计数相比,我们使用中性粒细胞形态参数能够更精确地定义哮喘表型。使用带有分类参数的UPOD,结合临床、检验医学和流行病学技术,可以进行更大规模的生物标志物研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验