Suppr超能文献

抗冻保护剂的生物合成以及耐寒的阿拉斯加甲虫Upis ceramboides中苏糖醇的选择性积累。

Cryoprotectant biosynthesis and the selective accumulation of threitol in the freeze-tolerant Alaskan beetle, Upis ceramboides.

作者信息

Walters Kent R, Pan Qingfeng, Serianni Anthony S, Duman John G

机构信息

From the Departments of Biological Sciences, Notre Dame, Indiana 46556.

Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556; Omicron Biochemicals, Inc., South Bend, Indiana 46617.

出版信息

J Biol Chem. 2009 Jun 19;284(25):16822-16831. doi: 10.1074/jbc.M109.013870. Epub 2009 Apr 29.

Abstract

Adult Upis ceramboides do not survive freezing in the summer but tolerate freezing to -60 degrees C in midwinter. The accumulation of two cryoprotective polyols, sorbitol and threitol, is integral to the extraordinary cold-hardiness of this beetle. U. ceramboides are the only animals known to accumulate high concentrations of threitol; however, the biosynthetic pathway has not been studied. A series of (13)C-labeled compounds was employed to investigate this biosynthetic pathway using (13)C{(1)H} NMR spectroscopy. In vivo metabolism of (13)C-labeled glucose isotopomers demonstrates that C-3-C-6 of glucose become C-1-C-4 of threitol. This labeling pattern is expected for 4-carbon saccharides arising from the pentose phosphate pathway. In vitro experiments show that threitol is synthesized from erythrose 4-phosphate, a C(4) intermediate in the PPP. Erythrose 4-phosphate is epimerized and/or isomerized to threose 4-phosphate, which is subsequently reduced by a NADPH-dependent polyol dehydrogenase and dephosphorylated by a sugar phosphatase to form threitol. Threitol 4-phosphate appears to be the preferred substrate of the sugar phosphatase(s), promoting threitol synthesis over that of erythritol. In contrast, the NADPH-dependent polyol dehydrogenase exhibits broad substrate specificity. Efficient erythritol catabolism under conditions that promote threitol synthesis, coupled with preferential threitol biosynthesis, appear to be responsible for the accumulation of high concentrations of threitol (250 mm) without concomitant accumulation of erythritol.

摘要

成年的赤拟谷盗在夏季无法在冷冻条件下存活,但在冬季中期能耐受零下60摄氏度的冷冻。两种抗冻多元醇,山梨醇和苏糖醇的积累,是这种甲虫非凡抗寒能力的关键。赤拟谷盗是已知唯一能积累高浓度苏糖醇的动物;然而,其生物合成途径尚未得到研究。一系列碳-13标记的化合物被用于利用碳-13{氢}核磁共振光谱研究这条生物合成途径。碳-13标记的葡萄糖异构体的体内代谢表明,葡萄糖的C-3至C-6变成了苏糖醇的C-1至C-4。这种标记模式与磷酸戊糖途径产生的四碳糖类的预期相符。体外实验表明,苏糖醇由磷酸戊糖途径中的C4中间体4-磷酸赤藓糖合成。4-磷酸赤藓糖差向异构化和/或异构化为4-磷酸苏糖,随后被依赖NADPH的多元醇脱氢酶还原,并被糖磷酸酶去磷酸化形成苏糖醇。4-磷酸苏糖醇似乎是糖磷酸酶的首选底物,相比于赤藓醇,它更有利于促进苏糖醇的合成。相比之下,依赖NADPH的多元醇脱氢酶表现出广泛的底物特异性。在促进苏糖醇合成的条件下,赤藓醇能高效分解代谢,再加上优先的苏糖醇生物合成,似乎是高浓度苏糖醇(250 mM)积累而不伴随赤藓醇积累的原因。

相似文献

10
Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs.三种陆生蜗牛的耐寒性和冻诱导葡萄糖积累。
Comp Biochem Physiol A Mol Integr Physiol. 2012 Apr;161(4):443-9. doi: 10.1016/j.cbpa.2012.01.002. Epub 2012 Jan 9.

引用本文的文献

5
What Worth the Garlic Peel.大蒜皮的价值
Int J Mol Sci. 2022 Feb 15;23(4):2126. doi: 10.3390/ijms23042126.
7
Metabolic Response of Aphid to Cold Stress.蚜虫对低温胁迫的代谢响应。
Biology (Basel). 2021 Dec 7;10(12):1288. doi: 10.3390/biology10121288.
8
Excipient Innovation Through Precompetitive Research.通过前期竞争研究实现辅料创新。
Pharm Res. 2021 Dec;38(12):2179-2184. doi: 10.1007/s11095-021-03157-y. Epub 2021 Dec 20.

本文引用的文献

5
Xylanases: from biology to biotechnology.木聚糖酶:从生物学到生物技术
Biotechnol Genet Eng Rev. 1996;13:101-31. doi: 10.1080/02648725.1996.10647925.
6
Tritiated 2-deoxy-D-glucose as a probe for cell membrane permeability studies.
Anal Biochem. 1982 Feb;120(1):8-11. doi: 10.1016/0003-2697(82)90310-4.
9
Physiology of cold tolerance in insects.昆虫的耐寒生理
Physiol Rev. 1985 Oct;65(4):799-832. doi: 10.1152/physrev.1985.65.4.799.
10
Freeze tolerance in animals.动物的耐寒性。
Physiol Rev. 1988 Jan;68(1):27-84. doi: 10.1152/physrev.1988.68.1.27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验