Sasaki Yo, Vohra Bhupinder P S, Lund Frances E, Milbrandt Jeffrey
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Neurosci. 2009 Apr 29;29(17):5525-35. doi: 10.1523/JNEUROSCI.5469-08.2009.
Axonal degeneration is a hallmark of many neurological disorders. Studies in animal models of neurodegenerative diseases indicate that axonal degeneration is an early event in the disease process, and delaying this process can lead to decreased progression of the disease and survival extension. Overexpression of the Wallerian degeneration slow (Wld(s)) protein can delay axonal degeneration initiated via axotomy, chemotherapeutic agents, or genetic mutations. The Wld(s) protein consists of the N-terminal portion of the ubiquitination factor Ube4b fused to the nicotinamide adenine dinucleotide (NAD(+)) biosynthetic enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1). We previously showed that the Nmnat1 portion of this fusion protein was the critical moiety for Wld(s)-mediated axonal protection. Here, we describe the development of an automated quantitative assay for assessing axonal degeneration. This method successfully showed that Nmnat1 enzymatic activity is important for axonal protection as mutants with reduced enzymatic activity lacked axon protective activity. We also found that Nmnat enzymes with diverse sequences and structures from various species, including Drosophila melanogaster, Saccharomyces cerevisiae, and archaebacterium Methanocaldococcus jannaschii, which encodes a protein with no homology to eukaryotic Nmnat enzymes, all mediate robust axonal protection after axotomy. Besides the importance of Nmnat enzymatic activity, we did not observe changes in the steady-state NAD(+) level, and we found that inhibition of nicotinamide phosphoribosyltransferase (Nampt), which synthesizes substrate for Nmnat in mammalian cells, did not affect the protective activity of Nmnat1. These results provide the possibility of a role for new Nmnat enzymatic activity in axonal protection in addition to NAD(+) synthesis.
轴突退变是许多神经疾病的一个标志。神经退行性疾病动物模型的研究表明,轴突退变是疾病进程中的早期事件,延缓这一进程可导致疾病进展减缓及生存期延长。沃勒变性慢(Wld(s))蛋白的过表达可延缓由轴突切断、化疗药物或基因突变引发的轴突退变。Wld(s)蛋白由泛素化因子Ube4b的N端部分与烟酰胺腺嘌呤二核苷酸(NAD(+))生物合成酶烟酰胺单核苷酸腺苷酰转移酶1(Nmnat1)融合而成。我们之前表明,该融合蛋白的Nmnat1部分是Wld(s)介导的轴突保护的关键部分。在此,我们描述了一种用于评估轴突退变的自动化定量检测方法的开发。该方法成功表明,Nmnat1酶活性对于轴突保护很重要,因为酶活性降低的突变体缺乏轴突保护活性。我们还发现,来自不同物种(包括黑腹果蝇、酿酒酵母和詹氏甲烷球菌,后者编码一种与真核Nmnat酶无同源性的蛋白质)的具有不同序列和结构的Nmnat酶,在轴突切断后均介导强大的轴突保护作用。除了Nmnat酶活性的重要性外,我们未观察到稳态NAD(+)水平的变化,并且我们发现抑制烟酰胺磷酸核糖基转移酶(Nampt,其在哺乳动物细胞中合成Nmnat的底物)并不影响Nmnat1的保护活性。这些结果表明,除了NAD(+)合成外,新的Nmnat酶活性在轴突保护中可能发挥作用。