Suppr超能文献

维持能量平衡是 Wld(S)介导的轴突保护的一个重要组成部分。

Maintaining energy homeostasis is an essential component of Wld(S)-mediated axon protection.

机构信息

Hope Center for Neurological Disorders and Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, MO 63110, USA.

出版信息

Neurobiol Dis. 2013 Nov;59:69-79. doi: 10.1016/j.nbd.2013.07.007. Epub 2013 Jul 24.

Abstract

Wld(S) mutation protects axons from degeneration in diverse experimental models of neurological disorders, suggesting that the mutation might act on a key step shared by different axon degeneration pathways. Here we test the hypothesis that Wld(S) protects axons by preventing energy deficiency commonly encountered in many diseases. We subjected compartmentally cultured, mouse cortical axons to energy deprivation with 6mM azide and zero glucose. In wild-type (WT) culture, the treatment, which reduced axon ATP level ([ATP]axon) by 65%, caused immediate axon depolarization followed by gradual free calcium accumulation and subsequent irreversible axon damage. The calcium accumulation resulted from calcium influx partially via L-type voltage-gated calcium channel (L-VGCC). Blocking L-VGCC with nimodipine reduced calcium accumulation and protected axons. Without altering baseline [ATP]axon, the presence of Wld(S) mutation significantly reduced the axon ATP loss and depolarization, restrained the subsequent calcium accumulation, and protected axons against energy deprivation. Wld(S) neurons possessed higher than normal nicotinamide mononucleotide adenylyltransferase (NMNAT) activity. The intrinsic Wld(S) NMNAT activity was required for the Wld(S)-mediated energy preservation and axon protection during but not prior to energy deprivation. NMNAT catalyzes the reversible reaction that produces nicotinamide adenine dinucleotide (NAD) from nicotinamide mononucleotide (NMN). Interestingly, preventing the production of NAD from NMN with FK866 increased [ATP]axon and protected axons from energy deprivation. These results indicate that the Wld(S) mutation depends on its intrinsic Wld(S) NMNAT activity and the subsequent increase in axon ATP but not NAD to protect axons, implicating a novel role of Wld(S) NMNAT in axon bioenergetics and protection.

摘要

Wld(S) 突变可保护神经退行性疾病的各种实验模型中的轴突免受变性,这表明该突变可能作用于不同轴突变性途径的关键步骤。在这里,我们测试了 Wld(S) 通过防止许多疾病中常见的能量缺乏来保护轴突的假设。我们使分区培养的小鼠皮质轴突受到含有 6mM 叠氮化物和零葡萄糖的能量剥夺处理。在野生型 (WT) 培养物中,该处理将轴突 ATP 水平 ([ATP]axon) 降低了 65%,导致轴突立即去极化,随后逐渐发生游离钙积累,随后发生不可逆的轴突损伤。钙积累是由于钙内流部分通过 L 型电压门控钙通道 (L-VGCC) 引起的。用尼莫地平阻断 L-VGCC 可减少钙积累并保护轴突。在不改变基线 [ATP]axon 的情况下,Wld(S) 突变的存在显着减少了轴突 ATP 的损失和去极化,抑制了随后的钙积累,并防止了能量剥夺对轴突的损伤。Wld(S) 神经元具有高于正常水平的烟酰胺单核苷酸腺苷酰转移酶 (NMNAT) 活性。在能量剥夺期间,但不在能量剥夺之前,Wld(S) 介导的能量保存和轴突保护需要内在的 Wld(S) NMNAT 活性。NMNAT 催化将烟酰胺单核苷酸 (NMN) 转化为烟酰胺腺嘌呤二核苷酸 (NAD) 的可逆反应。有趣的是,用 FK866 阻止 NMN 产生 NAD 会增加 [ATP]axon 并保护轴突免受能量剥夺。这些结果表明,Wld(S) 突变依赖于其内在的 Wld(S) NMNAT 活性和随后的轴突 ATP 增加,但不是 NAD 来保护轴突,表明 Wld(S) NMNAT 在轴突生物能量学和保护中具有新的作用。

相似文献

引用本文的文献

2
Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.突触-线粒体运输:神经适应与退变机制
Mol Cell Biochem. 2025 Jun;480(6):3399-3411. doi: 10.1007/s11010-025-05209-y. Epub 2025 Jan 22.
3
NAD, Axonal Maintenance, and Neurological Disease.NAD、轴突维持和神经疾病。
Antioxid Redox Signal. 2023 Dec;39(16-18):1167-1184. doi: 10.1089/ars.2023.0350. Epub 2023 Sep 7.

本文引用的文献

1
The axonal transport of mitochondria.线粒体的轴突运输。
J Cell Sci. 2012 May 1;125(Pt 9):2095-104. doi: 10.1242/jcs.053850. Epub 2012 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验