Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA.
Hum Mol Genet. 2013 Apr 15;22(8):1601-14. doi: 10.1093/hmg/ddt009. Epub 2013 Jan 11.
Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest a central role for axonal mitochondria in both degeneration and NMNAT/WLD(S) (Wallerian degeneration slow)-mediated protection. We used dorsal root ganglia (DRG) explants and Drosophila larval motor neurons (MNs) as models to address the role of mitochondria in Wallerian degeneration (WD). We find that expression of Drosophila NMNAT delays WD in human DRG neurons demonstrating evolutionary conservation of NMNAT function. Morphological comparison of mitochondria from WLD(S)-protected axons demonstrates that mitochondria shrink post-axotomy, though analysis of complex IV activity suggests that they retain their functional capacity despite this morphological change. To determine whether mitochondria are a critical site of regulation for WD, we genetically ablated mitochondria from Drosophila MN axons via the mitochondria trafficking protein milton. Milton loss-of-function did not induce axon degeneration in Drosophila larval MNs, and when axotomized WD proceeded stereotypically in milton distal axons although with a mild, but significant delay. Remarkably, the protective effects of NMNAT/WLD(S) were also maintained in axons devoid of mitochondria. These experiments unveil an axon self-destruction cascade governing WD that is not initiated by axonal mitochondria and for the first time illuminate a mitochondria-independent mechanism(s) regulating WD and NMNAT/WLD(S)-mediated axon protection.
轴突变性是神经退行性变的常见且通常早期特征,与神经疾病的临床表现和进展相关。烟酰胺单核苷酸腺苷转移酶 (NMNAT) 是一种神经保护因子,可延迟损伤后的轴突变性和神经退行性疾病模型中的轴突变性,提示轴突自我破坏的分子途径趋同。其潜在机制受到了强烈的研究,最近的报告表明轴突线粒体在变性和 NMNAT/WLD(S)(Wallerian 变性慢)介导的保护中起核心作用。我们使用背根神经节 (DRG) 外植体和果蝇幼虫运动神经元 (MN) 作为模型来研究线粒体在 Wallerian 变性 (WD) 中的作用。我们发现果蝇 NMNAT 的表达可延迟人类 DRG 神经元的 WD,表明 NMNAT 功能具有进化保守性。用 WLD(S) 保护的轴突中的线粒体进行形态比较表明,线粒体在轴突切断后收缩,但对复合物 IV 活性的分析表明,尽管发生了这种形态变化,它们仍保持其功能能力。为了确定线粒体是否是 WD 调节的关键部位,我们通过线粒体转运蛋白 milton 从果蝇 MN 轴突中遗传消融线粒体。Milton 功能丧失不会在果蝇幼虫 MN 中诱导轴突变性,并且当 axotomized 时 WD 在 milton 远端轴突中进行,尽管具有轻微但显着的延迟。值得注意的是,NMNAT/WLD(S) 的保护作用也在缺乏线粒体的轴突中得以维持。这些实验揭示了一个控制 WD 的轴突自我破坏级联,该级联不是由轴突线粒体引发的,并且首次阐明了一种独立于线粒体的机制来调节 WD 和 NMNAT/WLD(S) 介导的轴突保护。