Suppr超能文献

原子力显微镜微尺度压痕加载下牛关节软骨的力学性能

Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy.

作者信息

Park S, Costa K D, Ateshian G A, Hong K-S

机构信息

School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea.

出版信息

Proc Inst Mech Eng H. 2009 Apr;223(3):339-47. doi: 10.1243/09544119JEIM516.

Abstract

Atomic force microscopy (AFM) techniques have been increasingly used for investigating the mechanical properties of articular cartilage. According to the previous studies reporting the microscale Young's modulus under AFM indentation tests, the Hertz contact model has been employed with a sharp conical tip indenter. However, the non-linear microscale behaviour of articular cartilage could not be resolved by the standardized Hertz analysis using small and sharp atomic force microscope tips. Therefore, the objective of this study was to evaluate the microscale Young's modulus of articular cartilage more accurately through a non-Hertzian approach with a spherical tip of 5 microm diameter, and to characterize its microscale mechanical behaviour. This methodology adopted in the present study was proved by the consistent values between the microscale (2 per cent, about 9.3 kPa; 3 per cent, about 17.5kPa) and macroscale (2 per cent, about 8.3kPa; 3 per cent, about 18.3kPa) Young's moduli for 2 per cent and 3 per cent agarose gel (n = 100). Therefore, the microscale Young's modulus evaluated in this study is representative of more accurate measurements of cartilage stiffness at the 600 nm deformation level and corresponds to approximately 30.9 kPa (n = 100). Furthermore, on this level of the microscale deformation, articular cartilage showed depth-dependent and frequency-independent behaviour under AFM indentation loading. These findings reveal the microscale mechanical behaviour of articular cartilage more accurately and can be employed further to design microscale structures of chondrocyte-seeded scaffolds and tissue-engineered cartilage by evaluating their microscale properties.

摘要

原子力显微镜(AFM)技术已越来越多地用于研究关节软骨的力学性能。根据先前报道AFM压痕试验下微观尺度杨氏模量的研究,赫兹接触模型已被用于尖锐锥形尖端压头。然而,使用小而尖锐的原子力显微镜尖端进行的标准化赫兹分析无法解析关节软骨的非线性微观尺度行为。因此,本研究的目的是通过使用直径为5微米的球形尖端的非赫兹方法更准确地评估关节软骨的微观尺度杨氏模量,并表征其微观尺度力学行为。本研究采用的这种方法通过2%和3%琼脂糖凝胶(n = 100)的微观尺度(2%,约9.3 kPa;3%,约17.5 kPa)和宏观尺度(2%,约8.3 kPa;3%,约18.3 kPa)杨氏模量之间的一致值得到了验证。因此,本研究中评估的微观尺度杨氏模量代表了在600纳米变形水平下对软骨硬度更准确的测量,约为30.9 kPa(n = 100)。此外,在这种微观尺度变形水平下,关节软骨在AFM压痕加载下表现出深度依赖性和频率独立性行为。这些发现更准确地揭示了关节软骨的微观尺度力学行为,并且可以进一步用于通过评估其微观尺度特性来设计接种软骨细胞的支架和组织工程软骨的微观尺度结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验