Suppr超能文献

利用单壁碳纳米管进行近红外区域的癌症光热疗法。

Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.

作者信息

Zhou Feifan, Xing Da, Ou Zhongmin, Wu Baoyan, Resasco Daniel E, Chen Wei R

机构信息

South China Normal University, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou 510631, China.

出版信息

J Biomed Opt. 2009 Mar-Apr;14(2):021009. doi: 10.1117/1.3078803.

Abstract

Single-walled carbon nanotubes (SWNTs) have a high optical absorbance in the near-infrared (NIR) region. In this special optical window, biological systems are known to be highly transparent. The optical properties of SWNTs provide an opportunity for selective photothermal therapy for cancer treatment. Specifically, CoMoCAT nanotubes with a uniform size (about 0.81 nm) and a narrow absorption peak at 980 nm are ideal candidates for such a novel approach. Here, CoMoCAT SWNTs are conjugated to folate, which can bind specifically to the surface of the folate receptor tumor markers. Folate-SWNT (FA-SWNT) targeted tumor cells were irradiated by a 980-nm laser. In our in vitro and in vivo experiments, FA-SWNT effectively enhanced the photothermal destruction on tumor cells and noticeably spared the photothermal destruction for nontargeted normal cells. Thus, SWNTs, combined with suitable tumor markers, can be used as novel nanomaterials for selective photothermal therapy for cancer treatment.

摘要

单壁碳纳米管(SWNTs)在近红外(NIR)区域具有高吸光度。在这个特殊的光学窗口中,已知生物系统具有高度透明性。SWNTs的光学特性为癌症治疗的选择性光热疗法提供了机会。具体而言,尺寸均匀(约0.81纳米)且在980纳米处具有窄吸收峰的CoMoCAT纳米管是这种新方法的理想候选材料。在此,CoMoCAT SWNTs与叶酸缀合,叶酸可特异性结合到叶酸受体肿瘤标志物的表面。用980纳米激光照射叶酸-SWNT(FA-SWNT)靶向的肿瘤细胞。在我们的体外和体内实验中,FA-SWNT有效地增强了对肿瘤细胞的光热破坏,并且显著避免了对非靶向正常细胞的光热破坏。因此,SWNTs与合适的肿瘤标志物相结合,可作为用于癌症治疗的选择性光热疗法的新型纳米材料。

相似文献

1
Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.
J Biomed Opt. 2009 Mar-Apr;14(2):021009. doi: 10.1117/1.3078803.
2
Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging.
Cancer Lett. 2016 Dec 28;383(2):243-249. doi: 10.1016/j.canlet.2016.09.006. Epub 2016 Sep 30.
3
Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.
Adv Healthc Mater. 2016 May;5(10):1147-56. doi: 10.1002/adhm.201600015. Epub 2016 Mar 31.
5
Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12897-902. doi: 10.1073/pnas.0905195106. Epub 2009 Jul 20.
7
Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11600-5. doi: 10.1073/pnas.0502680102. Epub 2005 Aug 8.
9
Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy.
ACS Appl Mater Interfaces. 2014 Apr 9;6(7):4989-96. doi: 10.1021/am406031n. Epub 2014 Mar 18.

引用本文的文献

2
Immunomodulatory effects of photothermal therapy in breast cancer: advances and challenges.
Front Immunol. 2025 Jul 4;16:1544693. doi: 10.3389/fimmu.2025.1544693. eCollection 2025.
4
Holistic Investigation of Graphene Quantum Dot Endocytosis.
Small. 2025 Mar;21(9):e2406095. doi: 10.1002/smll.202406095. Epub 2025 Feb 2.
5
Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives.
Molecules. 2024 Apr 30;29(9):2073. doi: 10.3390/molecules29092073.
6
Cesium tungsten oxide-carbon nanotube-hydroxypropyl cellulose thermoresponsive display.
RSC Adv. 2024 Feb 26;14(10):6856-6864. doi: 10.1039/d3ra08377b. eCollection 2024 Feb 21.
9
Light-activated nanomaterials for tumor immunotherapy.
Front Chem. 2022 Oct 7;10:1031811. doi: 10.3389/fchem.2022.1031811. eCollection 2022.
10
Nanomedicine and versatile therapies for cancer treatment.
MedComm (2020). 2022 Aug 18;3(3):e163. doi: 10.1002/mco2.163. eCollection 2022 Sep.

本文引用的文献

1
Direct imaging of single-walled carbon nanotubes in cells.
Nat Nanotechnol. 2007 Nov;2(11):713-7. doi: 10.1038/nnano.2007.347. Epub 2007 Oct 28.
2
In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.
Nat Nanotechnol. 2007 Jan;2(1):47-52. doi: 10.1038/nnano.2006.170. Epub 2006 Dec 17.
5
Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.
J Am Chem Soc. 2006 Feb 15;128(6):2115-20. doi: 10.1021/ja057254a.
7
Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst.
J Am Chem Soc. 2003 Sep 17;125(37):11186-7. doi: 10.1021/ja036622c.
8
Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.
Cancer Lett. 2006 Jul 28;239(1):129-35. doi: 10.1016/j.canlet.2005.07.035. Epub 2005 Sep 28.
9
Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11600-5. doi: 10.1073/pnas.0502680102. Epub 2005 Aug 8.
10
Immunotargeted nanoshells for integrated cancer imaging and therapy.
Nano Lett. 2005 Apr;5(4):709-11. doi: 10.1021/nl050127s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验