Suppr超能文献

组织特异性成像技术是一种强大的方法,可用于区分体内由进展性多发性硬化症引起损伤的T1黑洞。

Tissue-specific imaging is a robust methodology to differentiate in vivo T1 black holes with advanced multiple sclerosis-induced damage.

作者信息

Riva M, Ikonomidou V N, Ostuni J J, van Gelderen P, Auh S, Ohayon J M, Tovar-Moll F, Richert N D, Duyn J H, Bagnato F

机构信息

Neuroimmunology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892-1400, USA.

出版信息

AJNR Am J Neuroradiol. 2009 Aug;30(7):1394-401. doi: 10.3174/ajnr.A1573. Epub 2009 Apr 30.

Abstract

BACKGROUND AND PURPOSE

Brains of patients with multiple sclerosis (MS) characteristically have "black holes" (BHs), hypointense lesions on T1-weighted (T1W) spin-echo (SE) images. Although conventional MR imaging can disclose chronic BHs (CBHs), it cannot stage the degree of their pathologic condition. Tissue-specific imaging (TSI), a recently introduced MR imaging technique, allows selective visualization of white matter (WM), gray matter (GM), and CSF on the basis of T1 values of classes of tissue. We investigated the ability of TSI-CSF to separate CBHs with longer T1 values, which likely represent lesions containing higher levels of destruction and unbound water.

MATERIALS AND METHODS

Eighteen patients with MS, who had already undergone MR imaging twice (24 months apart) on a 1.5T scanner, underwent a 3T MR imaging examination. Images acquired at 1.5T included sequences of precontrast and postcontrast T1W SE, T2-weighted (T2W) SE, and magnetization transfer (MT). Sequences obtained at 3T included precontrast and postcontrast T1W SE, T2W SE, T1 inversion recovery prepared fast spoiled gradient recalled-echo (IR-FSPGR) and TSI. A BH on the 3T-IR-FSPGR was defined as a CBH if seen as a hypointense, nonenhancing lesion with a corresponding T2 abnormality for at least 24 months. CBHs were separated into 2 groups: those visible as hyperintensities on TSI-CSF (group A), and those not appearing on the TSI-CSF (group B).

RESULTS

Mean MT ratios of group-A lesions (0.22 +/- 0.06, 0.13-0.35) were lower (F(1,13) = 60.39; P < .0001) than those of group-B lesions (0.32 +/- 0.03, 0.27-0.36).

CONCLUSIONS

Group-A lesions had more advanced tissue damage; thus, TSI is a potentially valuable method for qualitative and objective identification.

摘要

背景与目的

多发性硬化症(MS)患者的脑部特征性地存在“黑洞”(BHs),即在T1加权(T1W)自旋回波(SE)图像上呈低信号的病灶。尽管传统磁共振成像(MR成像)能够显示慢性黑洞(CBHs),但无法对其病理状况的程度进行分期。组织特异性成像(TSI)是一种最近引入的MR成像技术,它能够根据不同组织类别的T1值对白质(WM)、灰质(GM)和脑脊液(CSF)进行选择性可视化。我们研究了TSI-CSF区分具有较长T1值的CBHs的能力,这类CBHs可能代表含有更高水平破坏和游离水的病灶。

材料与方法

18例已在1.5T扫描仪上接受过两次MR成像检查(间隔24个月)的MS患者,又接受了一次3T MR成像检查。在1.5T获取的图像包括对比剂注射前和注射后的T1W SE、T2加权(T2W)SE以及磁化传递(MT)序列。在3T获取的序列包括对比剂注射前和注射后的T1W SE、T2W SE、T1反转恢复准备快速扰相梯度回波(IR-FSPGR)和TSI。如果在3T-IR-FSPGR上一个BH表现为低信号、无强化且伴有相应的T2异常至少24个月,则将其定义为CBH。CBHs被分为两组:在TSI-CSF上表现为高信号的(A组),以及在TSI-CSF上未出现的(B组)。

结果

A组病灶的平均MT比率(0.22±0.06,0.13 - 0.35)低于B组病灶(0.32±0.03,0.27 - 0.36)(F(1,13)=60.39;P<.0001)。

结论

A组病灶具有更严重的组织损伤;因此TSI是一种具有潜在价值的定性和客观识别方法。

相似文献

1
2
Lesions by tissue specific imaging characterize multiple sclerosis patients with more advanced disease.
Mult Scler. 2011 Dec;17(12):1424-31. doi: 10.1177/1352458511414601. Epub 2011 Jul 29.
5
In vivo quantitative evaluation of brain tissue damage in multiple sclerosis using gradient echo plural contrast imaging technique.
Neuroimage. 2010 Jul 1;51(3):1089-97. doi: 10.1016/j.neuroimage.2010.03.045. Epub 2010 Mar 23.
6
Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis.
J Magn Reson Imaging. 2013 Dec;38(6):1454-61. doi: 10.1002/jmri.24107. Epub 2013 Apr 1.
7
Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
Neuroimage. 2020 Jun;213:116690. doi: 10.1016/j.neuroimage.2020.116690. Epub 2020 Feb 29.
8
Axial 3D gradient-echo imaging for improved multiple sclerosis lesion detection in the cervical spinal cord at 3T.
Neuroradiology. 2013 Mar;55(4):431-9. doi: 10.1007/s00234-012-1118-5. Epub 2012 Dec 4.
9
Contrast enrichment of spinal cord MR imaging using a ratio of T1-weighted and T2-weighted signals.
J Magn Reson Imaging. 2014 Nov;40(5):1199-207. doi: 10.1002/jmri.24456. Epub 2013 Nov 4.

引用本文的文献

3
Watershed regions are more susceptible to tissue microstructural injury in multiple sclerosis.
Brain Commun. 2024 Sep 3;6(5):fcae299. doi: 10.1093/braincomms/fcae299. eCollection 2024.
4
Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis.
Brain Commun. 2022 Apr 4;4(2):fcac088. doi: 10.1093/braincomms/fcac088. eCollection 2022.
5
Perilesional neurodegenerative injury in multiple sclerosis: Relation to focal lesions and impact on disability.
Mult Scler Relat Disord. 2021 Apr;49:102738. doi: 10.1016/j.msard.2021.102738. Epub 2021 Jan 5.
6
Deep learning with diffusion basis spectrum imaging for classification of multiple sclerosis lesions.
Ann Clin Transl Neurol. 2020 May;7(5):695-706. doi: 10.1002/acn3.51037. Epub 2020 Apr 18.
7
Patterns of regional brain volume loss in multiple sclerosis: a cluster analysis.
J Neurol. 2020 Feb;267(2):395-405. doi: 10.1007/s00415-019-09595-4. Epub 2019 Oct 25.
8
Probing axons using multi-compartmental diffusion in multiple sclerosis.
Ann Clin Transl Neurol. 2019 Sep;6(9):1595-1605. doi: 10.1002/acn3.50836. Epub 2019 Aug 13.
9
Gray matter atrophy in multiple sclerosis despite clinical and lesion stability during natalizumab treatment.
PLoS One. 2018 Dec 21;13(12):e0209326. doi: 10.1371/journal.pone.0209326. eCollection 2018.
10
Untangling the R2* contrast in multiple sclerosis: A combined MRI-histology study at 7.0 Tesla.
PLoS One. 2018 Mar 21;13(3):e0193839. doi: 10.1371/journal.pone.0193839. eCollection 2018.

本文引用的文献

1
The pathologic substrate of magnetic resonance alterations in multiple sclerosis.
Neuroimaging Clin N Am. 2008 Nov;18(4):563-76, ix. doi: 10.1016/j.nic.2008.06.005.
2
Double Inversion Recovery MRI with fat suppression at 7 tesla: initial experience.
J Neuroimaging. 2010 Jan;20(1):87-92. doi: 10.1111/j.1552-6569.2008.00331.x.
3
Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis.
Eur Radiol. 2008 Oct;18(10):2311-20. doi: 10.1007/s00330-008-1009-7. Epub 2008 May 29.
5
The effect of interferon-beta on black holes in patients with multiple sclerosis.
Expert Opin Biol Ther. 2007 Jul;7(7):1079-91. doi: 10.1517/14712598.7.7.1079.
7
The measurement and clinical relevance of brain atrophy in multiple sclerosis.
Lancet Neurol. 2006 Feb;5(2):158-70. doi: 10.1016/S1474-4422(06)70349-0.
8
Conventional magnetic resonance imaging features in patients with tropical spastic paraparesis.
J Neurovirol. 2005 Dec;11(6):525-34. doi: 10.1080/13550280500385039.
9
Interferon-beta-1b effects on re-enhancing lesions in patients with multiple sclerosis.
Mult Scler. 2005 Dec;11(6):658-68. doi: 10.1191/1352458505ms1229oa.
10
Optimizing brain tissue contrast with EPI: a simulated annealing approach.
Magn Reson Med. 2005 Aug;54(2):373-85. doi: 10.1002/mrm.20561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验