Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110.
Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63130.
Ann Clin Transl Neurol. 2020 May;7(5):695-706. doi: 10.1002/acn3.51037. Epub 2020 Apr 18.
Multiple sclerosis (MS) lesions are heterogeneous with regard to inflammation, demyelination, axonal injury, and neuronal loss. We previously developed a diffusion basis spectrum imaging (DBSI) technique to better address MS lesion heterogeneity. We hypothesized that the profiles of multiple DBSI metrics can identify lesion-defining patterns. Here we test this hypothesis by combining a deep learning algorithm using deep neural network (DNN) with DBSI and other imaging methods.
Thirty-eight MS patients were scanned with diffusion-weighted imaging, magnetization transfer imaging, and standard conventional MRI sequences (cMRI). A total of 499 regions of interest were identified on standard MRI and labeled as persistent black holes (PBH), persistent gray holes (PGH), acute black holes (ABH), acute gray holes (AGH), nonblack or gray holes (NBH), and normal appearing white matter (NAWM). DBSI, diffusion tensor imaging (DTI), and magnetization transfer ratio (MTR) were applied to the 43,261 imaging voxels extracted from these ROIs. The optimized DNN with 10 fully connected hidden layers was trained using the imaging metrics of the lesion subtypes and NAWM.
Concordance, sensitivity, specificity, and accuracy were determined for the different imaging methods. DBSI-DNN derived lesion classification achieved 93.4% overall concordance with predetermined lesion types, compared with 80.2% for DTI-DNN model, 78.3% for MTR-DNN model, and 74.2% for cMRI-DNN model. DBSI-DNN also produced the highest specificity, sensitivity, and accuracy.
DBSI-DNN improves the classification of different MS lesion subtypes, which could aid clinical decision making. The efficacy and efficiency of DBSI-DNN shows great promise for clinical applications in automatic MS lesion detection and classification.
多发性硬化症(MS)病变在炎症、脱髓鞘、轴突损伤和神经元丧失方面存在异质性。我们之前开发了一种扩散基础谱成像(DBSI)技术,以更好地解决 MS 病变的异质性。我们假设,多种 DBSI 指标的分布可以识别病变定义模式。在这里,我们通过将深度学习算法与 DBSI 和其他成像方法相结合来验证这一假设。
38 名 MS 患者接受了扩散加权成像、磁化传递成像和标准常规 MRI 序列(cMRI)扫描。在标准 MRI 上共确定了 499 个感兴趣区,并标记为持续性黑洞(PBH)、持续性灰色孔(PGH)、急性黑洞(ABH)、急性灰色孔(AGH)、非黑色或灰色孔(NBH)和正常表现的白质(NAWM)。将 DBSI、弥散张量成像(DTI)和磁化传递率(MTR)应用于从这些 ROI 中提取的 43,261 个成像体素。使用病变亚型和 NAWM 的成像指标对具有 10 个全连接隐藏层的优化 DNN 进行了训练。
确定了不同成像方法的一致性、灵敏度、特异性和准确性。与 DTI-DNN 模型的 80.2%、MTR-DNN 模型的 78.3%和 cMRI-DNN 模型的 74.2%相比,DBSI-DNN 衍生的病变分类总体一致性达到 93.4%,与预定的病变类型一致。DBSI-DNN 还产生了最高的特异性、灵敏度和准确性。
DBSI-DNN 提高了不同 MS 病变亚型的分类,这有助于临床决策。DBSI-DNN 的功效和效率为自动 MS 病变检测和分类的临床应用提供了很大的前景。