Sun Junliang, Bonneau Charlotte, Cantín Angel, Corma Avelino, Díaz-Cabañas María J, Moliner Manuel, Zhang Daliang, Li Mingrun, Zou Xiaodong
Structural Chemistry and Berzelii Centre, EXSELENT on Porous Materials, Stockholm University, SE-106 91, Stockholm, Sweden.
Nature. 2009 Apr 30;458(7242):1154-7. doi: 10.1038/nature07957.
The synthesis of crystalline molecular sieves with pore dimensions that fill the gap between microporous and mesoporous materials is a matter of fundamental and industrial interest. The preparation of zeolitic materials with extralarge pores and chiral frameworks would permit many new applications. Two important steps in this direction include the synthesis of ITQ-33, a stable zeolite with 18 x 10 x 10 ring windows, and the synthesis of SU-32, which has an intrinsically chiral zeolite structure and where each crystal exhibits only one handedness. Here we present a germanosilicate zeolite (ITQ-37) with extralarge 30-ring windows. Its structure was determined by combining selected area electron diffraction (SAED) and powder X-ray diffraction (PXRD) in a charge-flipping algorithm. The framework follows the SrSi(2) (srs) minimal net and forms two unique cavities, each of which is connected to three other cavities to form a gyroidal channel system. These cavities comprise the enantiomorphous srs net of the framework. ITQ-37 is the first chiral zeolite with one single gyroidal channel. It has the lowest framework density (10.3 T atoms per 1,000 A(3)) of all existing 4-coordinated crystalline oxide frameworks, and the pore volume of the corresponding silica polymorph would be 0.38 cm(3) g(-1).
合成孔径尺寸填补了微孔和介孔材料之间空白的结晶分子筛,是一个具有基础研究意义和工业应用价值的课题。制备具有超大孔道和手性骨架的沸石材料将带来许多新的应用。在这个方向上的两个重要步骤包括合成ITQ - 33(一种具有18×10×10环窗口的稳定沸石)以及合成SU - 32(其具有固有的手性沸石结构且每个晶体仅表现出一种手性)。在此,我们展示了一种具有超大30元环窗口的锗硅沸石(ITQ - 37)。其结构通过在电荷翻转算法中结合选区电子衍射(SAED)和粉末X射线衍射(PXRD)来确定。该骨架遵循SrSi₂(srs)最小网络并形成两个独特的空腔,每个空腔与其他三个空腔相连以形成一个螺旋通道系统。这些空腔构成了骨架的对映异构srs网络。ITQ - 37是首个具有单一螺旋通道的手性沸石。它在所有现有的4配位结晶氧化物骨架中具有最低的骨架密度(每1000 ų中有10.3个T原子),并且相应二氧化硅多晶型物的孔体积将为0.38 cm³ g⁻¹。