de la Serna Ramón, Jurado-Sánchez Jaime, Li Jian, Márquez-Álvarez Carlos, Pérez-Pariente Joaquín, Gómez-Hortigüela Luis
Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (ICP-CSIC), c/Marie Curie 2, Madrid 28049, Spain.
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54067-54080. doi: 10.1021/acsami.4c14487. Epub 2024 Sep 25.
Knowledge of how extra-large-pore chiral zeolite asymmetric catalysts based on the -ITV framework imprint their chirality during a catalytic reaction is crucial in order to spread the scope for the catalytic enantioselective production of chiral compounds of interest. In this work, we have carried out a combined experimental and computational study on the catalytic activity of antipode GTM-3 catalysts during the ring-opening of -stilbene oxide with 1-butanol. Identification of the enantiomers of all the chiral species unraveled a surprising catalytic behavior: these chiral catalysts promote the transformation of one enantiomer of -stilbene oxide in the corresponding product (with inversion of configuration of the attacked C) via an S2 mechanism, and at the same time, the transformation of the other enantiomer of -stilbene oxide via an S1-like mechanism into the (with retention of configuration) and secondary products (diphenylacetaldehyde via rearrangement and derived products). A computational study based on DFT + D methods suggested a potential explanation for this catalytic behavior, associated with a different orientation of -stilbene oxide enantiomers bound on the Ge(T7) positions in units, which is stabilized by the development of intraframework H-bonds between the interrupted T7OH adjacent positions characteristic of this framework. Calculations suggest that each enantiomer of -stilbene oxide follows a different reaction pathway, one favoring the S2 route by addition of butanol from the opposite side to form -products, while the different orientation of the antipode enantiomer disfavors such S2 route mainly by steric repulsions and at the same time favors the reaction toward the S1 mechanism to give and secondary-products. Our study suggests that the strong enantioselectivity of GTM-3 catalysts for this reaction is associated with the particular orientation adopted by the chiral reactants within the chiral nanospace provided by the -ITV framework, similarly to what occurs with enzymes, and such preferential orientation is directly controlled by the asymmetric cavities where the reaction takes place, by the particular features of the Ge active sites in adjacent interrupted positions and by the presence of several framework OH groups in the nearby nanospace that interact with guest species. The experimental observations and the reaction mechanism proposed suggest that GTM-3 catalysts prepared from the (1,2) enantiomer of the ,-ethyl-methyl-pseudoephedrinium organic agent should be enriched in the 432 enantiomorphic space group of the -ITV framework and GTM-3 prepared from the (1,2) enantiomer in the antipode 432. Interestingly, resolution of the absolute configuration of GTM-3 materials from 3D-electron diffraction data has been accomplished and confirms such an assignment, giving an average 82% enantio-enrichment in the corresponding chiral polymorph. Structure-solution of the location of the chiral structure-directing agents indicates that the transfer of chirality from the molecular component to the zeolite polymorph is governed by the development of strong H-bonds between the molecular hydroxyl group and the interrupted T(7)OH framework positions.
了解基于-ITV骨架的超大孔手性沸石不对称催化剂如何在催化反应过程中赋予其手性,对于扩大催化对映选择性生产目标手性化合物的范围至关重要。在这项工作中,我们对反式GTM-3催化剂在氧化苯乙烯与1-丁醇开环反应中的催化活性进行了实验与计算相结合的研究。所有手性物种对映体的鉴定揭示了一种惊人的催化行为:这些手性催化剂通过S2机制促进氧化苯乙烯的一种对映体转化为相应产物(被攻击的C构型翻转),同时,氧化苯乙烯的另一种对映体通过类似S1的机制转化为产物(构型保留)和副产物(通过重排生成二苯基乙醛及其衍生产物)。基于DFT+D方法的计算研究为这种催化行为提出了一种潜在解释,这与氧化苯乙烯对映体在单元中Ge(T7)位置上的不同取向有关,这种取向通过该骨架特有的相邻中断T7OH位置之间形成的骨架内氢键得以稳定。计算表明,氧化苯乙烯的每个对映体遵循不同的反应途径,一种通过从相反侧添加丁醇形成产物而有利于S2途径,而反式对映体的不同取向主要通过空间排斥不利于这种S2途径,同时有利于向S1机制的反应生成产物和副产物。我们的研究表明,GTM-3催化剂对该反应的强对映选择性与手性反应物在-ITV骨架提供的手性纳米空间内所采取的特定取向有关,类似于酶的情况,并且这种优先取向直接由反应发生的不对称空腔、相邻中断位置的Ge活性位点的特定特征以及附近纳米空间中与客体物种相互作用的几个骨架OH基团的存在所控制。实验观察结果和提出的反应机制表明,由,-乙基-甲基-伪麻黄碱有机试剂的(1,2)对映体制备的GTM-3催化剂应富集在-ITV骨架的432对映异构空间群中,而由反式(1,2)对映体制备的GTM-3则在432中。有趣的是,已通过3D电子衍射数据完成了GTM-3材料绝对构型的解析,并证实了这种归属,在相应的手性多晶型物中平均对映体富集率为82%。手性结构导向剂位置的结构解析表明,手性从分子组分转移到沸石多晶型物是由分子羟基与中断的T(7)OH骨架位置之间形成的强氢键所控制的。