Zhong Yuan, Wang Huinan, Lu Guangming, Zhang Zhiqiang, Jiao Qing, Liu Yijun
Department of Biomedical Engineering, College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Brain Topogr. 2009 Sep;22(2):134-44. doi: 10.1007/s10548-009-0095-4. Epub 2009 May 1.
A fMRI connectivity analysis approach combining principal component analysis (PCA) and regression analysis is proposed to detect functional connectivity between the brain regions. By first using PCA to identify clusters within the vectors of fMRI time series, more energy and information features in the signal can be maintained than using averaged values from brain regions of interest. Then, regression analysis can be applied to the extracted principal components in order to further investigate functional connectivity. Finally, t-test is applied and the patterns with t-values lager than a threshold are considered as functional connectivity mappings. The validity and reliability of the presented method were demonstrated with both simulated data and human fMRI data obtained during behavioral task and resting state. Compared to the conventional functional connectivity methods such as average signal based correlation analysis, independent component analysis (ICA) and PCA, the proposed method achieves competitive performance with greater accuracy and true positive rate (TPR). Furthermore, the 'default mode' and motor network results of resting-state fMRI data indicate that using PCA may improve upon application of existing regression analysis methods in study of human brain functional connectivity.
提出了一种结合主成分分析(PCA)和回归分析的功能磁共振成像(fMRI)连接性分析方法,以检测脑区之间的功能连接。首先使用PCA识别fMRI时间序列向量中的聚类,与使用感兴趣脑区的平均值相比,可以保留信号中更多的能量和信息特征。然后,可以将回归分析应用于提取的主成分,以进一步研究功能连接。最后,应用t检验,将t值大于阈值的模式视为功能连接映射。通过行为任务和静息状态下获得的模拟数据和人类fMRI数据,证明了所提出方法的有效性和可靠性。与传统的功能连接方法(如基于平均信号的相关性分析、独立成分分析(ICA)和PCA)相比,该方法具有更高的准确性和真阳性率(TPR),取得了具有竞争力的性能。此外,静息态fMRI数据的“默认模式”和运动网络结果表明,在人类脑功能连接研究中,使用PCA可能会改进现有回归分析方法的应用。