Liu Hesheng, Agam Yigal, Madsen Joseph R, Kreiman Gabriel
Department of Neuroscience and Ophthalmology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
Neuron. 2009 Apr 30;62(2):281-90. doi: 10.1016/j.neuron.2009.02.025.
The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here, we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms poststimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feedforward theories and provides strong constraints for computational models of human vision.
视觉识别的困难源于需要在数百毫秒内实现高选择性,同时保持对物体变换的鲁棒性。视觉识别理论在神经元回路是否调用循环反馈连接方面存在差异。视觉皮层中神经生理反应的时间在区分自下而上和自上而下的理论中起着关键作用。在这里,我们以毫秒分辨率量化了11名人类受试者912个电极的颅内场电位所传达的视觉信息量。我们可以在刺激后100毫秒的单次试验中就从人类视觉皮层解码物体类别信息。解码性能对深度旋转和尺度变化具有鲁棒性。结果表明,颞叶中的生理活动可以解释视觉识别的关键特性。单次试验中的快速解码与前馈理论兼容,并为人类视觉的计算模型提供了强大的约束。