Suppr超能文献

从一个大脑到另一个大脑的表示转移的无监督方法。

Unsupervised method for representation transfer from one brain to another.

作者信息

Nakamura Daiki, Kaji Shizuo, Kanai Ryota, Hayashi Ryusuke

机构信息

Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan.

Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.

出版信息

Front Neuroinform. 2024 Nov 28;18:1470845. doi: 10.3389/fninf.2024.1470845. eCollection 2024.

Abstract

Although the anatomical arrangement of brain regions and the functional structures within them are similar across individuals, the representation of neural information, such as recorded brain activity, varies among individuals owing to various factors. Therefore, appropriate conversion and translation of brain information is essential when decoding neural information using a model trained using another person's data or to achieving brain-to-brain communication. We propose a brain representation transfer method that involves transforming a data representation obtained from one person's brain into that obtained from another person's brain, without relying on corresponding label information between the transferred datasets. We defined the requirements to enable such brain representation transfer and developed an algorithm that distills the assumption of common similarity structure across the brain datasets into a rotational and reflectional transformation across low-dimensional hyperspheres using encoders for non-linear dimensional reduction. We first validated our proposed method using data from artificial neural networks as substitute neural activity and examining various experimental factors. We then evaluated the applicability of our method to real brain activity using functional magnetic resonance imaging response data acquired from human participants. The results of these validation experiments showed that our method successfully performed representation transfer and achieved transformations in some cases that were similar to those obtained when using corresponding label information. Additionally, we reconstructed images from individuals' data without training personalized decoders by performing brain representation transfer. The results suggest that our unsupervised transfer method is useful for the reapplication of existing models personalized to specific participants and datasets to decode brain information from other individuals. Our findings also serve as a proof of concept for the methodology, enabling the exchange of the latent properties of neural information representing individuals' sensations.

摘要

尽管个体之间大脑区域的解剖结构及其内部的功能结构相似,但由于各种因素,诸如记录的大脑活动等神经信息的表征在个体之间存在差异。因此,在使用基于他人数据训练的模型解码神经信息或实现脑对脑通信时,对大脑信息进行适当的转换和翻译至关重要。我们提出了一种大脑表征转移方法,该方法涉及将从一个人的大脑获得的数据表征转换为从另一个人的大脑获得的数据表征,而无需依赖转移数据集之间的相应标签信息。我们定义了实现这种大脑表征转移的要求,并开发了一种算法,该算法使用编码器进行非线性降维,将大脑数据集之间共同相似结构的假设提炼为低维超球面上的旋转和反射变换。我们首先使用来自人工神经网络的数据作为替代神经活动来验证我们提出的方法,并研究各种实验因素。然后,我们使用从人类参与者获取的功能磁共振成像响应数据评估了我们的方法对真实大脑活动的适用性。这些验证实验的结果表明,我们的方法成功地进行了表征转移,并且在某些情况下实现了与使用相应标签信息时获得的变换相似的变换。此外,我们通过执行大脑表征转移,在不训练个性化解码器的情况下从个体数据重建图像。结果表明,我们的无监督转移方法对于重新应用针对特定参与者和数据集进行个性化的现有模型以解码来自其他个体的大脑信息很有用。我们的发现还为该方法提供了概念验证,能够交换代表个体感觉的神经信息的潜在属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f10/11634869/7bc23ba8ec07/fninf-18-1470845-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验