Tang Bin, Dutt Karoni, Papale Ligia, Rusconi Raffaella, Shankar Anupama, Hunter Jessica, Tufik Sergio, Yu Frank H, Catterall William A, Mantegazza Massimo, Goldin Alan L, Escayg Andrew
Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA.
Neurobiol Dis. 2009 Jul;35(1):91-102. doi: 10.1016/j.nbd.2009.04.007. Epub 2009 May 3.
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability.
电压门控钠通道SCN1A中的突变是导致多种癫痫疾病的原因,包括伴有热性惊厥附加症的全身性癫痫(GEFS+)和婴儿严重肌阵挛性癫痫(SMEI)。为了确定SCN1A突变对体内通道功能的影响,我们构建了一种细菌人工染色体(BAC)转基因小鼠模型,该模型表达人类SCN1A的GEFS+突变R1648H。与表达对照Scn1a转基因的小鼠相比,携带R1648H突变的小鼠对惊厥剂海藻酸表现出更严重的反应。对携带R1648H突变小鼠的解离神经元进行电生理分析发现,仅在抑制性双极神经元中,失活后的恢复延迟且使用依赖性失活增加,并且仅在兴奋性锥体神经元中,失活的电压依赖性出现超极化偏移。这些结果表明,SCN1A突变的影响具有细胞类型依赖性,并且R1648H突变特异性地导致中间神经元兴奋性降低。