Ehler Eric D, Bzdusek Karl, Tomé Wolfgang A
Department of Medical Physics, University of Wisconsin, Madison, WI 53792, USA.
Med Dosim. 2009 Summer;34(2):145-53. doi: 10.1016/j.meddos.2008.08.007. Epub 2008 Oct 7.
Four-dimensional computed tomography (4D-CT) is a useful tool in the treatment of tumors that undergo significant motion. To fully utilize 4D-CT motion information in the treatment of mobile tumors such as lung cancer, autosegmentation methods will need to be developed. Using autosegmentation tools in the Pinnacle(3) v8.1t treatment planning system, 6 anonymized 4D-CT data sets were contoured. Two test indices were developed that can be used to evaluate which autosegmentation tools to apply to a given gross tumor volume (GTV) region of interest (ROI). The 4D-CT data sets had various phase binning error levels ranging from 3% to 29%. The appropriate autosegmentation method (rigid translational image registration and deformable surface mesh) was determined to properly delineate the GTV in all of the 4D-CT phases for the 4D-CT data sets with binning errors of up to 15%. The ITV was defined by 2 methods: a mask of the GTV in all 4D-CT phases and the maximum intensity projection. The differences in centroid position and volume were compared with manual segmentation studies in literature. The indices developed in this study, along with the autosegmentation tools in the treatment planning system, were able to automatically segment the GTV in the four 4D-CTs with phase binning errors of up to 15%.
四维计算机断层扫描(4D-CT)是治疗有显著运动的肿瘤的一种有用工具。为了在治疗如肺癌等移动肿瘤时充分利用4D-CT运动信息,需要开发自动分割方法。利用Pinnacle(3) v8.1t治疗计划系统中的自动分割工具,对6个匿名的4D-CT数据集进行了轮廓勾画。开发了两个测试指标,可用于评估将哪些自动分割工具应用于给定的感兴趣的大体肿瘤体积(GTV)区域。4D-CT数据集的相位分箱误差水平各不相同,范围从3%到29%。对于相位分箱误差高达15%的4D-CT数据集,确定了合适的自动分割方法(刚性平移图像配准和可变形表面网格),以便在所有4D-CT相位中正确描绘GTV。ITV通过两种方法定义:所有4D-CT相位中GTV的掩码和最大强度投影。将质心位置和体积的差异与文献中的手动分割研究进行了比较。本研究中开发的指标以及治疗计划系统中的自动分割工具,能够对相位分箱误差高达15%的四个4D-CT中的GTV进行自动分割。