Suppr超能文献

用于海底分类的多视图合成孔径声纳图像的贝叶斯数据融合

Bayesian data fusion of multiview synthetic aperture sonar imagery for seabed classification.

作者信息

Williams David P

机构信息

NATO Undersea Research Centre, 19126 La Spezia (SP), Italy.

出版信息

IEEE Trans Image Process. 2009 Jun;18(6):1239-54. doi: 10.1109/TIP.2009.2017161. Epub 2009 May 2.

Abstract

A Bayesian data fusion approach for seabed classification using multiview synthetic aperture sonar (SAS) imagery is proposed. The principled approach exploits all available information and results in probabilistic predictions. Each data point, corresponding to a unique 10 m x 10 m area of seabed, is represented by a vector of wavelet-based features. For each seabed type, the distribution of these features is then modeled by a unique Gaussian mixture model. When multiple views of the same data point (i.e., area of seabed) are available, the views are combined via a joint likelihood calculation. The end result of this Bayesian formulation is the posterior probability that a given data point belongs to each seabed type. It is also shown how these posterior probabilities can be exploited in a form of entropy-based active-learning to determine the most useful additional data to acquire. Experimental results of the proposed multiview classification framework are shown on a large data set of real, multiview SAS imagery spanning more than 2 km (2) of seabed.

摘要

提出了一种使用多视图合成孔径声纳(SAS)图像进行海底分类的贝叶斯数据融合方法。该原则性方法利用了所有可用信息,并得出概率预测结果。每个数据点对应于一个独特的10米×10米海底区域,由基于小波特征的向量表示。对于每种海底类型,然后通过独特的高斯混合模型对这些特征的分布进行建模。当同一数据点(即海底区域)有多个视图可用时,通过联合似然计算将这些视图进行组合。这种贝叶斯公式的最终结果是给定数据点属于每种海底类型的后验概率。还展示了如何以基于熵的主动学习形式利用这些后验概率来确定要获取的最有用的额外数据。所提出的多视图分类框架的实验结果展示在一个跨越超过2平方公里海底的真实多视图SAS图像的大数据集上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验