Suppr超能文献

表面增强共振拉曼散射(SERS)在有机功能材料研究中的应用:9,10-双(()-2-(吡啶-4-基)乙烯基)蒽的电子结构和电荷转移性质

Application of surface-enhanced resonance Raman scattering (SERS) to the study of organic functional materials: electronic structure and charge transfer properties of 9,10-bis(()-2-(pyridin-4-yl)vinyl)anthracene.

作者信息

Soto Juan, Imbarack Elizabeth, López-Tocón Isabel, Sánchez-Cortés Santiago, Otero Juan C, Leyton Patricio

机构信息

Department of Physical Chemistry, Faculty of Science, Andalucía Tech, Unidad Asociada IEM-CSIC 29071-Málaga Spain

Instituto de Química, Pontificia Universidad Católica de Valparaiso Valparaiso Chile.

出版信息

RSC Adv. 2019 May 9;9(25):14511-14519. doi: 10.1039/c9ra01269a. eCollection 2019 May 7.

Abstract

The electron donor-acceptor properties of 9,10-bis(()-2-(pyridin-4-yl)vinyl) anthracene (BP4VA) are studied by means of surface-enhanced Raman scattering (SERS) spectroscopy and vibronic theory of resonance Raman spectroscopy. The SERS spectra recorded in an electrochemical cell with a silver working electrode have been interpreted on the basis of resonance Raman vibronic theory assisted by DFT calculations. It is demonstrated that the adsorbate-metal interaction occurs through the nitrogen atom of the pyridyl moiety. Concerning the electron donor-acceptor properties of the adsorbate, it is shown that the charge transfer excited states of BP4VA are not optically active, in contrast, an internal transition to an excited state of BP4VA, which is localized in the anthracene framework, is strongly allowed. The charge transfer states will be populated by an ultrafast non-radiative process, that is, internal conversion. Thus, irradiation of BP4VA interacting with an appropriate surface creates an effective charge separation.

摘要

通过表面增强拉曼散射(SERS)光谱和共振拉曼光谱的振动理论研究了9,10-双(()-2-(吡啶-4-基)乙烯基)蒽(BP4VA)的电子供体-受体性质。在具有银工作电极的电化学池中记录的SERS光谱,已在密度泛函理论(DFT)计算辅助的共振拉曼振动理论基础上进行了解释。结果表明,吸附质与金属之间的相互作用是通过吡啶基部分的氮原子发生的。关于吸附质的电子供体-受体性质,研究表明BP4VA的电荷转移激发态没有光学活性,相反,BP4VA向蒽骨架中局域化的激发态的内部跃迁是强烈允许的。电荷转移态将通过超快非辐射过程,即内转换来填充。因此,与合适表面相互作用的BP4VA的辐照会产生有效的电荷分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8674/9064130/76bef2d3e6a5/c9ra01269a-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验