Unit of Bioinformatics and Connectivity Analysis (UBICA), Institute of Industrial Pharmacy, Faculty of Pharmacy, and Department of Organic Chemistry, University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain.
J Comput Chem. 2010 Jan 15;31(1):164-73. doi: 10.1002/jcc.21292.
In the previous work, we reported a multitarget Quantitative Structure-Activity Relationship (mt-QSAR) model to predict drug activity against different fungal species. This mt-QSAR allowed us to construct a drug-drug multispecies Complex Network (msCN) to investigate drug-drug similarity (González-Díaz and Prado-Prado, J Comput Chem 2008, 29, 656). However, important methodological points remained unclear, such as follows: (1) the accuracy of the methods when applied to other problems; (2) the effect of the distance type used to construct the msCN; (3) how to perform the inverse procedure to study species-species similarity with multidrug resistance CNs (mdrCN); and (4) the implications and necessary steps to perform a substructural Triadic Census Analysis (TCA) of the msCN. To continue the present series with other important problem, we developed here a mt-QSAR model for more than 700 drugs tested in the literature against different parasites (predicting antiparasitic drugs). The data were processed by Linear Discriminate Analysis (LDA) and the model classifies correctly 93.62% (1160 out of 1239 cases) in training. The model validation was carried out by means of external predicting series; the model classified 573 out of 607, that is, 94.4% of cases. Next, we carried out the first comparative study of the topology of six different drug-drug msCNs based on six different distances such as Euclidean, Chebychev, Manhattan, etc. Furthermore, we compared the selected drug-drug msCN and species-species mdsCN with random networks. We also introduced here the inverse methodology to construct species-species msCN based on a mt-QSAR model. Last, we reported the first substructural analysis of drug-drug msCN using Triadic Census Analysis (TCA) algorithm.
在之前的工作中,我们报道了一个多靶定量构效关系(mt-QSAR)模型,用于预测不同真菌物种的药物活性。该 mt-QSAR 允许我们构建一个药物 - 药物多物种复杂网络(msCN),以研究药物 - 药物相似性(González-Díaz 和 Prado-Prado,J Comput Chem 2008, 29, 656)。然而,一些重要的方法问题仍然不清楚,例如:(1)方法应用于其他问题时的准确性;(2)构建 msCN 时使用的距离类型的影响;(3)如何进行逆过程,使用多药耐药 CNs(mdrCN)研究物种 - 物种相似性;以及(4)执行 msCN 的亚结构三角普查分析(TCA)的含义和必要步骤。为了继续本系列的其他重要问题,我们在这里开发了一个针对文献中测试的 700 多种抗寄生虫药物的 mt-QSAR 模型(预测抗寄生虫药物)。数据通过线性判别分析(LDA)进行处理,该模型在训练中正确分类了 93.62%(1160 例中的 1239 例)。模型验证是通过外部预测系列进行的;该模型对 607 例中的 573 例进行了分类,即 94.4%的病例。接下来,我们基于六种不同的距离(如欧几里得、切比雪夫、曼哈顿等),对六种不同的药物 - 药物 msCN 的拓扑结构进行了首次比较研究。此外,我们将选择的药物 - 药物 msCN 和物种 - 物种 mdsCN 与随机网络进行了比较。我们还在这里介绍了基于 mt-QSAR 模型构建物种 - 物种 msCN 的逆方法。最后,我们报告了使用三角普查分析(TCA)算法对药物 - 药物 msCN 进行的首次亚结构分析。