Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Eur J Med Chem. 2009 Nov;44(11):4516-21. doi: 10.1016/j.ejmech.2009.06.018. Epub 2009 Jun 24.
There are many of pathogen bacteria species which very different susceptibility profile to different antibacterial drugs. There are many drugs described with very different affinity to a large number of receptors. In this work, we selected Drug-Bacteria Pairs (DBPs) of affinity/non-affinity drugs with similar/dissimilar bacteria and represented it as a large network, which may be used to identify drugs that can act on bacteria. Computational chemistry prediction of the biological activity based on one-target Quantitative Structure-Activity Relationship (ot-QSAR) studies substantially increases the potentialities of this kind of networks avoiding time and resource consuming experiments. Unfortunately almost all ot-QSAR models predict the biological activity of drugs against only one bacterial species. Consequently, multi-tasking learning to predict drug's activity against different species with a single model (mt-QSAR) is a goal of major importance. These mt-QSARs offer a good opportunity to construct drug-drug similarity Complex Networks. Unfortunately, almost QSAR models are unspecific or predict activity against only one receptor. To solve this problem, we developed here a multi-bacteria QSAR classification model. The model correctly classifies 202 out of 241 active compounds (83.8%) and 169 out of 200 non-active cases (84.5%). Overall training predictability was 84.13% (371 out of 441 cases). The validation of the model was carried out by means of external predicting series, classifying the model 197 out of 221 (89.4%) cases. In order to show how the model functions in practice a virtual screening was carried out recognizing the model as active 86.7%, 520 out of 600 cases not used in training or predicting series. Outputs of this QSAR model were used as inputs to construct a network. The observed network has 1242 nodes (DBPs), 772,736 edges or DBPs with similar activity (sDBPs). The network predicted has 1031 nodes, 641,377 sDBPs. After edge-to-edge comparison, we have demonstrated that the predicted network is significantly similar to the observed one and both have distribution closer to exponential than to normal.
有许多病原体细菌物种对不同的抗菌药物具有不同的敏感性。有许多药物被描述为与大量受体具有非常不同的亲和力。在这项工作中,我们选择了具有相似/不同细菌的亲和/非亲和药物的药物-细菌对(DBP),并将其表示为一个大型网络,该网络可用于识别可作用于细菌的药物。基于单靶定量构效关系(ot-QSAR)研究的计算化学预测大大提高了这种网络的潜力,避免了耗时且资源密集型的实验。不幸的是,几乎所有 ot-QSAR 模型都仅预测一种细菌物种的药物的生物活性。因此,使用单个模型预测药物对不同物种的活性(mt-QSAR)是一个非常重要的目标。这些 mt-QSAR 为构建药物-药物相似性复杂网络提供了很好的机会。不幸的是,几乎没有 QSAR 模型是特异性的,或者仅预测对一种受体的活性。为了解决这个问题,我们在这里开发了一种多细菌 QSAR 分类模型。该模型正确分类了 241 种活性化合物中的 202 种(83.8%)和 200 种非活性化合物中的 169 种(84.5%)。整体训练预测率为 84.13%(371 例中的 441 例)。通过外部预测系列验证了该模型,将 221 例中的 197 例(89.4%)进行分类。为了展示模型的实际应用,我们进行了虚拟筛选,将模型识别为活性的 600 例中的 520 例(86.7%),这些案例未用于训练或预测系列。该 QSAR 模型的输出用作构建网络的输入。所观察到的网络具有 1242 个节点(DBP),772736 个边或具有相似活性的 DBP(sDBP)。预测的网络具有 1031 个节点,641377 个 sDBP。在边到边的比较之后,我们证明了预测的网络与观察到的网络非常相似,并且两者的分布都更接近指数而不是正态分布。