Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070, Australia.
Nanotechnology. 2010 Jan 15;21(2):025605. doi: 10.1088/0957-4484/21/2/025605. Epub 2009 Dec 3.
The formation of arrays of vertically aligned nanotips on a moderately heated (up to 500 degrees C) Si surface exposed to reactive low-temperature radio frequency (RF) Ar+H(2) plasmas is studied. It is demonstrated that the nanotip surface density, aspect ratio and height dispersion strongly depend on the substrate temperature, discharge power, and gas composition. It is shown that nanotips with aspect ratios from 2.0 to 4.0 can only be produced at a higher RF power density (41.7 mW cm(-3)) and a hydrogen content of about 60%, and that larger aspect ratios can be achieved at substrate temperatures of about 300 degrees C. The use of higher (up to 500 degrees C) temperatures leads to a decrease of the aspect ratio but promotes the formation of more uniform arrays with the height dispersion decreasing to 1.5. At lower (approximately 20 mW cm(-3)) RF power density, only semispherical nanodots can be produced. Based on these experimental results, a nanotip formation scenario is proposed suggesting that sputtering, etching, hydrogen termination, and atom/radical re-deposition are the main concurrent mechanisms for the nanostructure formation. Numerical calculations of the ion flux distribution and hydrogen termination profiles can be used to predict the nanotip shapes and are in a good agreement with the experimental results. This approach can be applied to describe the kinetics of low-temperature formation of other nanoscale materials by plasma treatment.
在适度加热(高达 500°C)的 Si 表面上暴露于反应性低温射频 (RF) Ar+H(2) 等离子体中,研究了垂直排列纳米尖阵列的形成。研究表明,纳米尖的表面密度、纵横比和高度分散强烈依赖于衬底温度、放电功率和气体组成。结果表明,只有在较高的 RF 功率密度(41.7 mW cm(-3)) 和约 60%的氢气含量下,才能产生纵横比为 2.0 至 4.0 的纳米尖,并且在约 300°C 的衬底温度下可以实现更大的纵横比。使用更高的(高达 500°C)温度会降低纵横比,但会促进更均匀的阵列形成,高度分散度降低到 1.5。在较低的(约 20 mW cm(-3)) RF 功率密度下,只能产生半球形纳米点。基于这些实验结果,提出了一个纳米尖形成的情景,表明溅射、刻蚀、氢终止和原子/自由基再沉积是纳米结构形成的主要并发机制。离子通量分布和氢终止轮廓的数值计算可用于预测纳米尖的形状,并与实验结果吻合良好。这种方法可用于描述等离子体处理低温形成其他纳米材料的动力学。