Suppr超能文献

使用耦合递归网络的状态依赖计算。

State-dependent computation using coupled recurrent networks.

作者信息

Rutishauser Ueli, Douglas Rodney J

机构信息

Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91225, USA.

出版信息

Neural Comput. 2009 Feb;21(2):478-509. doi: 10.1162/neco.2008.03-08-734.

Abstract

Although conditional branching between possible behavioral states is a hallmark of intelligent behavior, very little is known about the neuronal mechanisms that support this processing. In a step toward solving this problem, we demonstrate by theoretical analysis and simulation how networks of richly interconnected neurons, such as those observed in the superficial layers of the neocortex, can embed reliable, robust finite state machines. We show how a multistable neuronal network containing a number of states can be created very simply by coupling two recurrent networks whose synaptic weights have been configured for soft winner-take-all (sWTA) performance. These two sWTAs have simple, homogeneous, locally recurrent connectivity except for a small fraction of recurrent cross-connections between them, which are used to embed the required states. This coupling between the maps allows the network to continue to express the current state even after the input that elicited that state is withdrawn. In addition, a small number of transition neurons implement the necessary input-driven transitions between the embedded states. We provide simple rules to systematically design and construct neuronal state machines of this kind. The significance of our finding is that it offers a method whereby the cortex could construct networks supporting a broad range of sophisticated processing by applying only small specializations to the same generic neuronal circuit.

摘要

尽管在可能的行为状态之间进行条件分支是智能行为的一个标志,但对于支持这种处理的神经元机制却知之甚少。在朝着解决这个问题迈出的一步中,我们通过理论分析和模拟证明了高度相互连接的神经元网络,比如在新皮质表层观察到的那些网络,如何能够嵌入可靠、稳健的有限状态机。我们展示了通过耦合两个其突触权重已被配置用于软赢家通吃(sWTA)性能的循环网络,可以非常简单地创建一个包含多个状态的多稳态神经元网络。这两个sWTA除了它们之间一小部分循环交叉连接外,具有简单、均匀、局部循环的连接性,这些交叉连接用于嵌入所需的状态。映射之间的这种耦合使得即使在引发该状态的输入被撤回后,网络仍能继续表达当前状态。此外,少量的转换神经元实现了嵌入状态之间必要的输入驱动转换。我们提供了简单的规则来系统地设计和构建这类神经元状态机。我们这一发现的意义在于,它提供了一种方法,通过仅对相同的通用神经元回路进行小的专门化处理,皮质就能构建支持广泛复杂处理的网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验