Suppr超能文献

用分布式类新皮层神经元网络解决约束满足问题。

Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.

作者信息

Rutishauser Ueli, Slotine Jean-Jacques, Douglas Rodney J

机构信息

Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A., and Cedars-Sinai Medical Center, Departments of Neurosurgery, Neurology and Biomedical Sciences, Los Angeles, CA 90048, U.S.A.

Nonlinear Systems Laboratory, Department of Mechanical Engineering and Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, U.S.A.

出版信息

Neural Comput. 2018 May;30(5):1359-1393. doi: 10.1162/NECO_a_01074. Epub 2018 Mar 22.

Abstract

Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

摘要

找到满足外部输入和内部表征所施加约束的行动对于决策至关重要。我们证明,一些重要类别的约束满足问题(CSP)可以由由同质合作竞争模块组成的网络来解决,这些模块具有与新皮质表层中观察到的基序相似的连接性。赢家通吃模块通过将约束嵌入到原本同质的模块化计算基质上的编程神经元进行稀疏耦合。我们展示了在该基质上嵌入CSP的平面四色图着色、最大独立集和数独的任何实例的规则,并提供了保证这些图着色问题将收敛到一个解的数学证明。该网络由不饱和线性阈值神经元组成。它们缺乏右饱和性使得整个网络能够通过循环激发产生的不稳定动力学来探索问题空间。探索的方向由约束神经元引导。虽然许多问题仅使用线性抑制性约束就能解决,但当这些负约束通过非线性乘法抑制来实现时,网络在难题上的性能会显著提升。总体而言,我们的结果证明了不稳定性而非稳定性在网络计算中的重要性,并为神经回路中双重抑制机制的计算作用提供了见解。

相似文献

1
Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.
Neural Comput. 2018 May;30(5):1359-1393. doi: 10.1162/NECO_a_01074. Epub 2018 Mar 22.
2
State-dependent computation using coupled recurrent networks.
Neural Comput. 2009 Feb;21(2):478-509. doi: 10.1162/neco.2008.03-08-734.
3
Nonlinear stimulus representations in neural circuits with approximate excitatory-inhibitory balance.
PLoS Comput Biol. 2020 Sep 18;16(9):e1008192. doi: 10.1371/journal.pcbi.1008192. eCollection 2020 Sep.
4
Rapid neocortical dynamics: cellular and network mechanisms.
Neuron. 2009 Apr 30;62(2):171-89. doi: 10.1016/j.neuron.2009.04.008.
5
Competition through selective inhibitory synchrony.
Neural Comput. 2012 Aug;24(8):2033-52. doi: 10.1162/NECO_a_00304. Epub 2012 Apr 17.
6
Neuronal circuits of the neocortex.
Annu Rev Neurosci. 2004;27:419-51. doi: 10.1146/annurev.neuro.27.070203.144152.
7
Attractor dynamics in a modular network model of neocortex.
Network. 2006 Sep;17(3):253-76. doi: 10.1080/09548980600774619.
8
Neuronal avalanches in neocortical circuits.
J Neurosci. 2003 Dec 3;23(35):11167-77. doi: 10.1523/JNEUROSCI.23-35-11167.2003.
9
Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
J Neurosci. 2009 Oct 21;29(42):13172-81. doi: 10.1523/JNEUROSCI.2358-09.2009.
10
Computation in dynamically bounded asymmetric systems.
PLoS Comput Biol. 2015 Jan 24;11(1):e1004039. doi: 10.1371/journal.pcbi.1004039. eCollection 2015 Jan.

引用本文的文献

1
How does the "default mode" network contribute to semantic cognition?
Brain Lang. 2024 May;252:105405. doi: 10.1016/j.bandl.2024.105405. Epub 2024 Apr 4.
2
Two kinds of memory signals in neurons of the human hippocampus.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2115128119. doi: 10.1073/pnas.2115128119. Epub 2022 May 5.
3
A Place for Viruses on the Tree of Life.
Front Microbiol. 2021 Jan 14;11:604048. doi: 10.3389/fmicb.2020.604048. eCollection 2020.
4
An Ant Colony Optimization Based on Information Entropy for Constraint Satisfaction Problems.
Entropy (Basel). 2019 Aug 6;21(8):766. doi: 10.3390/e21080766.

本文引用的文献

1
Persistently active neurons in human medial frontal and medial temporal lobe support working memory.
Nat Neurosci. 2017 Apr;20(4):590-601. doi: 10.1038/nn.4509. Epub 2017 Feb 20.
2
Theory of cortical function.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1773-1782. doi: 10.1073/pnas.1619788114. Epub 2017 Feb 6.
3
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.
Front Neurosci. 2016 Mar 30;10:118. doi: 10.3389/fnins.2016.00118. eCollection 2016.
4
Anatomy and function of an excitatory network in the visual cortex.
Nature. 2016 Apr 21;532(7599):370-4. doi: 10.1038/nature17192. Epub 2016 Mar 28.
5
Dendritic integration: 60 years of progress.
Nat Neurosci. 2015 Dec;18(12):1713-21. doi: 10.1038/nn.4157. Epub 2015 Nov 25.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
Front Neurosci. 2015 Apr 29;9:141. doi: 10.3389/fnins.2015.00141. eCollection 2015.
8
Contribution of sublinear and supralinear dendritic integration to neuronal computations.
Front Cell Neurosci. 2015 Mar 24;9:67. doi: 10.3389/fncel.2015.00067. eCollection 2015.
9
Computation in dynamically bounded asymmetric systems.
PLoS Comput Biol. 2015 Jan 24;11(1):e1004039. doi: 10.1371/journal.pcbi.1004039. eCollection 2015 Jan.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验