Suppr超能文献

了解你的邻居:从基于事件的真实世界输入中进行地形的无监督学习。

Getting to know your neighbors: unsupervised learning of topography from real-world, event-based input.

作者信息

Boerlin Martin, Delbruck Tobi, Eng Kynan

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland.

出版信息

Neural Comput. 2009 Jan;21(1):216-38. doi: 10.1162/neco.2008.06-07-554.

Abstract

Biological neural systems must grow their own connections and maintain topological relations between elements that are related to the sensory input surface. Artificial systems have traditionally prewired such maps, but the sensor arrangement is not always known and can be expensive to specify before run time. Here we present a method for learning and updating topographic maps in systems comprising modular, event-based elements. Using an unsupervised neural spike-timing-based learning rule combined with Hebbian learning, our algorithm uses the spatiotemporal coherence of the external world to train its network. It improves on existing algorithms by not assuming a known topography of the target map and includes a novel method for automatically detecting edge elements. We show how, for stimuli that are small relative to the sensor resolution, the temporal learning window parameters can be determined without using any user-specified constants. For stimuli that are larger relative to the sensor resolution, we provide a parameter extraction method that generally outperforms the small-stimulus method but requires one user-specified constant. The algorithm was tested on real data from a 64 x 64-pixel section of an event-based temporal contrast silicon retina and a 360-tile tactile luminous floor. It learned 95.8% of the correct neighborhood relations for the silicon retina within about 400 seconds of real-world input from a driving scene and 98.1% correct for the sensory floor after about 160 minutes of human pedestrian traffic. Residual errors occurred in regions receiving little or ambiguous input, and the learned topological representations were able to update automatically in response to simulated damage. Our algorithm has applications in the design of modular autonomous systems in which the interfaces between components are learned during operation rather than at design time.

摘要

生物神经系统必须自行建立连接,并维持与感觉输入表面相关的元素之间的拓扑关系。传统的人工系统预先连接了此类映射,但传感器的排列并不总是已知的,并且在运行前指定可能成本高昂。在此,我们提出一种在由模块化、基于事件的元素组成的系统中学习和更新地形图的方法。我们的算法使用基于神经脉冲时间的无监督学习规则并结合赫布学习,利用外部世界的时空相干性来训练其网络。它改进了现有算法,不假设目标映射的已知地形,并且包括一种自动检测边缘元素的新方法。我们展示了,对于相对于传感器分辨率较小的刺激,如何在不使用任何用户指定常数的情况下确定时间学习窗口参数。对于相对于传感器分辨率较大的刺激,我们提供了一种参数提取方法,该方法通常优于小刺激方法,但需要一个用户指定常数。该算法在来自基于事件的时间对比度硅视网膜的64×64像素部分和360块瓷砖触觉发光地板的真实数据上进行了测试。在来自驾驶场景的约400秒真实世界输入后,它学习到了硅视网膜95.8%的正确邻域关系,在约160分钟的人类行人交通后,对感觉地板的学习正确率为98.1%。在接收很少或模糊输入的区域出现了残余误差,并且学习到的拓扑表示能够响应模拟损伤而自动更新。我们的算法在模块化自主系统的设计中有应用,其中组件之间的接口是在运行期间而非设计时学习的。

相似文献

1
Getting to know your neighbors: unsupervised learning of topography from real-world, event-based input.
Neural Comput. 2009 Jan;21(1):216-38. doi: 10.1162/neco.2008.06-07-554.
3
A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.
Neural Netw. 2011 Jan;24(1):12-8. doi: 10.1016/j.neunet.2010.09.009. Epub 2010 Sep 18.
4
Online unsupervised formation of cell assemblies for the encoding of multiple cognitive maps.
Neural Netw. 2009 Jul-Aug;22(5-6):687-96. doi: 10.1016/j.neunet.2009.06.025. Epub 2009 Jul 2.
5
Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
Neural Comput. 2007 Nov;19(11):2881-912. doi: 10.1162/neco.2007.19.11.2881.
6
Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity.
Neural Netw. 2012 Aug;32:339-48. doi: 10.1016/j.neunet.2012.02.022. Epub 2012 Feb 14.
7
Nonlinear complex-valued extensions of Hebbian learning: an essay.
Neural Comput. 2005 Apr;17(4):779-838. doi: 10.1162/0899766053429381.
8
Learning transform invariant object recognition in the visual system with multiple stimuli present during training.
Neural Netw. 2008 Sep;21(7):888-903. doi: 10.1016/j.neunet.2007.11.004. Epub 2008 Apr 8.
9
An enhanced self-organizing incremental neural network for online unsupervised learning.
Neural Netw. 2007 Oct;20(8):893-903. doi: 10.1016/j.neunet.2007.07.008. Epub 2007 Aug 14.
10
Learning invariant object recognition in the visual system with continuous transformations.
Biol Cybern. 2006 Feb;94(2):128-42. doi: 10.1007/s00422-005-0030-z. Epub 2005 Dec 21.

引用本文的文献

1
Finding a roadmap to achieve large neuromorphic hardware systems.
Front Neurosci. 2013 Sep 10;7:118. doi: 10.3389/fnins.2013.00118. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验