Neural Netw. 2011 Jan;24(1):12-8. doi: 10.1016/j.neunet.2010.09.009. Epub 2010 Sep 18.
To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers.
为了消除混沌通信系统中的非线性信道失真,提出了一种基于流水线递归神经网络(JPRNN)的新型联合处理自适应非线性均衡器,该均衡器使用改进的实时递归学习(RTRL)算法。此外,还采用自适应幅度 RTRL 算法来克服嵌套过程带来的恶化效应。计算机仿真表明,所提出的均衡器优于流水线递归神经网络(PRNN)和递归神经网络(RNN)均衡器。