Biophys J. 1973 May;13(5):409-36. doi: 10.1016/S0006-3495(73)85996-X.
An algorithm needed for computer simulation of immunodiffusion has been deduced from existing theories of the in vitro reaction between antibody and antigen. The "Goldberg most probable polymer distribution" theory provides a formula that gives the amount of free antibody, free antigen, and diffusible complexes from extreme antibody excess through extreme antigen excess for any valences of antibody and antigen. As is shown here, that formula can be used even for those reactions producing complexes, cyclical or otherwise, that may precipitate as well as for those reactions involving heterogeneity of binding avidities. It is necessary, however, to specify an extent of reaction parameter. Five limiting expressions for this parameter are proposed as options for the basic algorithm. These are identified as: (a) the "Heidelberger-Kendall complete reaction" option, (b) the "Singer-Campbell constant avidity" option, (c) the "Hudson extensive antibody heterogeneity" option, (d) a new "extensive antigen heterogeneity" option, and (e) the "Goldberg critical extent of reaction" option. Literature data showing need for the various options are presented.
已经从抗体和抗原体外反应的现有理论中推导出了用于免疫扩散计算机模拟的算法。“戈德堡最可能聚合物分布”理论提供了一个公式,该公式给出了从极端抗体过量到极端抗原过量的任何抗体和抗原价数的游离抗体、游离抗原和可扩散复合物的量。如这里所示,即使对于产生复合物的反应,该公式也可以使用,这些复合物可能会沉淀,也可能会涉及结合亲和力的异质性。但是,有必要指定反应参数的程度。为此,提出了五个限制反应参数的表达式作为基本算法的选项。这些选项被标识为:(a)“海德堡-肯德尔完全反应”选项,(b)“辛格-坎贝尔恒定亲和力”选项,(c)“赫德森广泛的抗体异质性”选项,(d)一个新的“广泛的抗原异质性”选项,以及(e)“戈德堡临界反应程度”选项。提出了显示需要各种选项的文献数据。