Trautman R
Biophys J. 1972 Nov;12(11):1474-95. doi: 10.1016/S0006-3495(72)86176-9.
Theories of diffusion with chemical reaction are reviewed as to their contributions toward developing an algorithm needed for computer simulation of immunodiffusion. The Spiers-Augustin moving sink and the Engelberg stationary sink theories show how the antibody-antigen reaction can be incorporated into boundary conditions of the free diffusion differential equations. For this, a stoichiometric precipitate was assumed and the location of precipitin lines could be predicted. The Hill simultaneous linear adsorption theory provides a mathematical device for including another special type of antibody-antigen reaction in antigen excess regions of the gel. It permits an explanation for the lowered antigen diffusion coefficient, observed in the Oudin arrangement of single linear diffusion, but does not enable prediction of the location of precipitin lines. The most promising mathematical approach for a general solution is implied in the Augustin alternating cycle theory. This assumes the immunodiffusion process can be evaluated by alternating computation cycles: free diffusion without chemical reaction and chemical reaction without diffusion. The algorithm for the free diffusion update cycle, extended to both linear and radial geometries, is given in detail since it was based on gross flow rather than more conventional expressions in terms of net flow. Limitations on the numerical integration process using this algorithm are illustrated for free diffusion from a cylindrical well.
本文综述了伴有化学反应的扩散理论,探讨了其在开发免疫扩散计算机模拟所需算法方面的贡献。斯皮尔斯 - 奥古斯汀移动汇理论和恩格尔伯格固定汇理论展示了如何将抗体 - 抗原反应纳入自由扩散微分方程的边界条件。为此,假定了化学计量沉淀,并可预测沉淀线的位置。希尔同时线性吸附理论提供了一种数学方法,用于在凝胶的抗原过量区域纳入另一种特殊类型的抗体 - 抗原反应。它可以解释在单线性扩散的奥丁装置中观察到的抗原扩散系数降低的现象,但无法预测沉淀线的位置。奥古斯汀交替循环理论暗示了一种最有前途的通用解决方案的数学方法。该理论假定免疫扩散过程可以通过交替计算循环来评估:无化学反应的自由扩散和无扩散的化学反应。详细给出了扩展到线性和径向几何形状的自由扩散更新循环算法,因为它基于总流量而非更传统的净流量表达式。通过从圆柱形孔进行自由扩散,说明了使用该算法进行数值积分过程的局限性。