Suppr超能文献

脱水生物体内的水潭:热刺激去极化电流研究。

Pools of water in anhydrobiotic organisms: A thermally stimulated depolarization current study.

机构信息

Section of Plant Biology, Cornell University, Ithaca, New York 14853 USA.

出版信息

Biophys J. 1992 Sep;63(3):663-72. doi: 10.1016/S0006-3495(92)81638-7.

Abstract

The ability to survive the removal of water in anhydrous biosystems is especially remarkable as a departure from the manifold structural and functional dependences on the presence of H(2)O molecules. Identifiable pools of water present in dry soybean axes were investigated by means of the thermally stimulated depolarization current method. Samples were examined in the temperature range 100-340 K and over water contents (h, in gram H(2)O per gram sample dry weight) ranging from h = 0.05 to 0.30 g/g. Three water-dependent relaxation mechanisms were detected; one attributed to dipolar reorientation of H(2)O molecules hydrogen-bonded to other water molecules, one to reorientation of CH(2)OH groups, and one to a glass transition in sugar-water domains. These glassy domains can protect intracellular components against destruction in the dehydrated state. Interestingly, protecting glassy domains were not found in dehydration intolerant seeds, supporting the hypothesis that the ability to withstand dehydration is associated with intracellular glass formation. A model for the state of cell water at interfaces is proposed.

摘要

在无水生物体系中,能够在去除水的情况下存活下来,这尤其引人注目,因为这与对 H(2)O 分子存在的多种结构和功能依赖形成了鲜明的对比。通过热刺激去极化电流法研究了干燥大豆轴中存在的可识别水池。在 100-340 K 的温度范围内,对水含量(h,每克干燥样品中以克 H(2)O 计)为 h = 0.05 至 0.30 g/g 的样品进行了检查。检测到了三种依赖于水的弛豫机制;一种归因于与其他水分子形成氢键的 H(2)O 分子的偶极子重取向,一种归因于 CH(2)OH 基团的重取向,一种归因于糖-水域的玻璃化转变。这些玻璃态区域可以保护细胞内成分在脱水状态下免受破坏。有趣的是,在不耐脱水的种子中未发现保护玻璃态区域,这支持了这样的假设,即耐受脱水的能力与细胞内玻璃形成有关。提出了一种用于界面处细胞水状态的模型。

相似文献

1
Pools of water in anhydrobiotic organisms: A thermally stimulated depolarization current study.
Biophys J. 1992 Sep;63(3):663-72. doi: 10.1016/S0006-3495(92)81638-7.
2
Glass transitions in soybean seed : relevance to anhydrous biology.
Plant Physiol. 1991 Jun;96(2):660-3. doi: 10.1104/pp.96.2.660.
3
Thermally stimulated relaxations in DNA.
J Biomol Struct Dyn. 1994 Jun;11(6):1345-55. doi: 10.1080/07391102.1994.10508072.
5
Effect of water on the molecular mobility of elastin.
Biomacromolecules. 2004 May-Jun;5(3):958-64. doi: 10.1021/bm034436t.
7
Water and lipid relations in beech (Fagus sylvatica L.) seeds and its effect on storage behaviour.
Biochim Biophys Acta. 2003 Apr 7;1621(1):48-56. doi: 10.1016/s0304-4165(03)00046-1.
10
Structural changes of water in a hydrogel during dehydration.
J Chem Phys. 2009 Jan 21;130(3):034501. doi: 10.1063/1.3058616.

本文引用的文献

1
Calorimetric studies of the state of water in seed tissues.
Biophys J. 1990 Dec;58(6):1463-71. doi: 10.1016/S0006-3495(90)82491-7.
3
Glass transitions in soybean seed : relevance to anhydrous biology.
Plant Physiol. 1991 Jun;96(2):660-3. doi: 10.1104/pp.96.2.660.
4
Glass formation and desiccation tolerance in seeds.
Plant Physiol. 1991 May;96(1):302-4. doi: 10.1104/pp.96.1.302.
5
Effects of cooling rate on seeds exposed to liquid nitrogen temperatures.
Plant Physiol. 1989 Aug;90(4):1478-85. doi: 10.1104/pp.90.4.1478.
6
The glassy state in corn embryos.
Plant Physiol. 1989 Mar;89(3):977-81. doi: 10.1104/pp.89.3.977.
7
Sugars and desiccation tolerance in seeds.
Plant Physiol. 1988 Nov;88(3):829-32. doi: 10.1104/pp.88.3.829.
8
Lipid-sugar interactions : relevance to anhydrous biology.
Plant Physiol. 1988 Mar;86(3):754-8. doi: 10.1104/pp.86.3.754.
9
Bound water in soybean seed and its relation to respiration and imbibitional damage.
Plant Physiol. 1984 May;75(1):114-7. doi: 10.1104/pp.75.1.114.
10
The relationship between water binding and desiccation tolerance in tissues.
Plant Physiol. 1987;85(1):232-8. doi: 10.1104/pp.85.1.232.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验