Suppr超能文献

与间充质基质细胞共培养可增加造血祖细胞的增殖和维持。

Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells.

机构信息

Department of Medicine V, University of Heidelberg, Heidelberg, Germany.

出版信息

J Cell Mol Med. 2010 Jan;14(1-2):337-50. doi: 10.1111/j.1582-4934.2009.00776.x. Epub 2009 May 11.

Abstract

Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC.

摘要

间充质基质细胞(MSC)被认为为脐血造血干/祖细胞(HPC)的体外扩增提供了合适的细胞环境。在这项研究中,我们通过使用羧基荧光素二乙酸 N-琥珀酰亚胺酯(CFSE)进行细胞分裂追踪,同时分析了 HPC 的细胞分裂历史和免疫表型分化。与 MSC 共培养极大地增强了人类 HPC 的增殖,特别是更原始的 CD34+CD38- 部分。没有共培养,CD34 和 CD133 的表达在几次细胞分裂后减少,而 CD38 的表达在几次细胞分裂后上调,然后在快速增殖的细胞中减少。与 MSC 共培养维持了原始的免疫表型(CD34+,CD133+和 CD38-)更长的倍增次数,而 HPC 中分化标记物(CD13、CD45 和 CD56)的上调延迟到更高的细胞分裂次数。特别是早期细胞传代的 MSC 在 HPC 中维持 CD34 表达超过更多的细胞分裂,而高传代的 MSC 进一步提高了它们的增殖率。MAPK1 丝裂原活化蛋白激酶 1(MAPK1)的抑制损害了 HPC 的增殖和分化,但不影响长期培养起始细胞的维持。饲养层细胞中 N-钙黏蛋白和 VCAM1 的 siRNA 敲低增加了缓慢分裂的 HPC 比例,而整合素β1(ITGB1)和 CD44 的敲低损害了它们的分化。总之,MSC 支持具有原始免疫表型的 HPC 的增殖和自我更新。使用 MSC 的早期传代和涉及 HPC-MSC 相互作用的蛋白质的遗传操作可能进一步增强基于 MSC 的脐血扩增。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f00/3837622/5c3c90e271b3/jcmm0014-0337-f1.jpg

相似文献

1
Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells.
J Cell Mol Med. 2010 Jan;14(1-2):337-50. doi: 10.1111/j.1582-4934.2009.00776.x. Epub 2009 May 11.
6

引用本文的文献

1
Advances in HIV Gene Therapy.
Int J Mol Sci. 2024 Feb 28;25(5):2771. doi: 10.3390/ijms25052771.
4
Application of mesenchymal stem cells for anti-senescence and clinical challenges.
Stem Cell Res Ther. 2023 Sep 19;14(1):260. doi: 10.1186/s13287-023-03497-z.
7
Human Hematopoietic Stem Cells Co-cultured in 3D with Stromal Support to Optimize Lentiviral Vector-mediated Gene Transduction.
Indian J Hematol Blood Transfus. 2023 Apr;39(2):173-182. doi: 10.1007/s12288-022-01576-4. Epub 2022 Nov 1.
10
Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing.
Front Bioeng Biotechnol. 2022 Nov 24;10:1049965. doi: 10.3389/fbioe.2022.1049965. eCollection 2022.

本文引用的文献

1
The Stromal Activity of Mesenchymal Stromal Cells.
Transfus Med Hemother. 2008;35(3):185-193. doi: 10.1159/000128956. Epub 2008 May 16.
2
Aging and replicative senescence have related effects on human stem and progenitor cells.
PLoS One. 2009 Jun 9;4(6):e5846. doi: 10.1371/journal.pone.0005846.
4
Mesenchymal stem cells and cardiac repair.
J Cell Mol Med. 2008 Oct;12(5B):1795-810. doi: 10.1111/j.1582-4934.2008.00457.x. Epub 2008 Aug 5.
5
Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum.
Tissue Eng Part C Methods. 2008 Sep;14(3):185-96. doi: 10.1089/ten.tec.2008.0060.
6
Replicative senescence of mesenchymal stem cells: a continuous and organized process.
PLoS One. 2008 May 21;3(5):e2213. doi: 10.1371/journal.pone.0002213.
8
N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells.
Cell Stem Cell. 2008 Apr 10;2(4):367-79. doi: 10.1016/j.stem.2008.01.017.
10
Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44.
Cells Tissues Organs. 2008;188(1-2):160-9. doi: 10.1159/000112821. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验