文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Wharton 胶间充质基质细胞在直接细胞-细胞接触培养系统中模拟造血龛,支持脐血来源的 CD34 细胞的扩增。

Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood-derived CD34 Cells Mimicking a Hematopoietic Niche in a Direct Cell-cell Contact Culture System.

机构信息

1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy.

2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.

出版信息

Cell Transplant. 2018 Jan;27(1):117-129. doi: 10.1177/0963689717737089.


DOI:10.1177/0963689717737089
PMID:29562783
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6434478/
Abstract

Wharton's jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood-hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC-conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34 cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34 cell populations (one floating and one adherent to WJ-MSCs) with different phenotypic and functional characteristics. Both multipotent CD34/CD38 and lineage-committed CD34/CD38 hematopoietic progenitors were expanded in a DC system. The former were significantly more represented in the adherent cell fraction than in the floating one (18.7 ± 11.2% vs. 9.7 ± 7.9% over the total CD34 cells). Short-term colony forming unit (CFU) assays showed that HSPCs adherent to the stromal layer were able to generate a higher frequency of immature colonies (CFU-granulocyte/macrophage and burst-forming unit erythroid/large colonies) with respect to the floating cells. In the attempt to identify molecules that may play a role in supporting the observed ex vivo HSPC growth, we performed secretome analyses. We found a number of proteins involved in the HSPC homing, self-renewal, and differentiation in all tested conditions. It is important to note that a set of sixteen proteins, which are only in part reported to be expressed in any hematopoietic niche, were exclusively found in the DC system secretome. In conclusion, WJ-MSCs allowed a significant ex vivo expansion of multipotent as well as committed HSPCs. This may be relevant for future clinical applications.

摘要

沃顿氏胶间充质基质细胞(WJ-MSCs)最近被用作共培养系统中的饲养层,以扩增脐带血造血干/祖细胞(UCB-HSPCs)。在这里,我们研究了 WJ-MSCs 在支持 UCB-HSPC 体外扩增中的作用,无论是在与 WJ-MSCs 直接接触(DC)培养时,还是在通过 Transwell 系统分离培养时,或是在存在 WJ-MSC 条件培养基时。我们发现,在短期培养中,与其他条件相比,UCB-CD34 细胞在 DC 系统中(15.7±4.1 倍增加)的扩增程度更高。此外,在 DC 中,我们证明了两种不同的 CD34 细胞群体(一种漂浮,一种粘附于 WJ-MSCs),具有不同的表型和功能特征。多能性 CD34/CD38 和谱系定向性 CD34/CD38 造血祖细胞均在 DC 系统中扩增。前者在贴壁细胞部分中的比例明显高于漂浮细胞部分(18.7±11.2%相对于总 CD34 细胞的 9.7±7.9%)。短期集落形成单位(CFU)测定显示,与悬浮细胞相比,粘附于基质层的 HSPC 能够产生更高频率的未成熟集落(CFU-粒细胞/巨噬细胞和爆式形成单位红细胞/大集落)。为了鉴定可能在支持观察到的 HSPC 体外生长中起作用的分子,我们进行了分泌组分析。我们发现了在所有测试条件下参与 HSPC 归巢、自我更新和分化的多种蛋白质。重要的是要注意,一组 16 种蛋白质,仅部分报告在任何造血龛位中表达,仅在 DC 系统分泌组中发现。总之,WJ-MSCs 允许多能性和定向性 HSPCs 的显著体外扩增。这可能与未来的临床应用有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/adad0213f483/10.1177_0963689717737089-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/92914a9da291/10.1177_0963689717737089-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/597370fdb130/10.1177_0963689717737089-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/adad0213f483/10.1177_0963689717737089-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/92914a9da291/10.1177_0963689717737089-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/597370fdb130/10.1177_0963689717737089-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b83/6434478/adad0213f483/10.1177_0963689717737089-fig3.jpg

相似文献

[1]
Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood-derived CD34 Cells Mimicking a Hematopoietic Niche in a Direct Cell-cell Contact Culture System.

Cell Transplant. 2018-1

[2]
Wharton's jelly mesenchymal stem cell-based or umbilical vein endothelial cell-based serum-free coculture with cytokines supports the ex vivo expansion/maintenance of cord blood hematopoietic stem/progenitor cells.

Stem Cell Res Ther. 2019-12-5

[3]
Hypoxia with Wharton's jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34 cells.

Stem Cell Res Ther. 2018-6-13

[4]
Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review.

Stem Cell Rev Rep. 2017-2

[5]
Cord blood CD34+ cells expanded on Wharton's jelly multipotent mesenchymal stromal cells improve the hematopoietic engraftment in NOD/SCID mice.

Eur J Haematol. 2014-11

[6]
Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.

Stem Cell Res Ther. 2017-4-26

[7]
Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells.

Ann Hematol. 2006-4

[8]
Isolation of a novel embryonic stem cell cord blood-derived population with in vitro hematopoietic capacity in the presence of Wharton's jelly-derived mesenchymal stromal cells.

Cytotherapy. 2018-12-4

[9]
Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow.

Tissue Eng Part A. 2013-12

[10]
Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture.

Blood Adv. 2019-4-9

引用本文的文献

[1]
Characterization and Proteomic Profiling of Hepatocyte-like Cells Derived from Human Wharton's Jelly Mesenchymal Stromal Cells: De Novo Expression of Liver-Specific Enzymes.

Biology (Basel). 2025-1-24

[2]
Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture.

Mol Biol Rep. 2024-1-25

[3]
An optimized procedure for preparation of conditioned medium from Wharton's jelly mesenchymal stromal cells isolated from umbilical cord.

Front Mol Biosci. 2023-10-2

[4]
The Truth Is Out There: Biological Features and Clinical Indications of Extracellular Vesicles from Human Perinatal Stem Cells.

Cells. 2023-9-25

[5]
Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications.

Front Cell Dev Biol. 2023-6-27

[6]
Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy.

Cells. 2023-6-19

[7]
Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications.

Biomedicines. 2022-11-5

[8]
Wharton's jelly-derived stromal cells and their cell therapy applications in allogeneic haematopoietic stem cell transplantation.

J Cell Mol Med. 2022-3

[9]
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications.

Stem Cells Int. 2022-1-6

[10]
Magnetic Nanoparticles and Magnetic Field Exposure Enhances Chondrogenesis of Human Adipose Derived Mesenchymal Stem Cells But Not of Wharton Jelly Mesenchymal Stem Cells.

Front Bioeng Biotechnol. 2021-10-18

本文引用的文献

[1]
Maturation-associated gene expression profiles along normal human bone marrow monopoiesis.

Br J Haematol. 2017-1-12

[2]
CD109, a negative regulator of TGF-β signaling, is a putative risk marker in diffuse large B-cell lymphoma.

Int J Hematol. 2017-5

[3]
Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review.

Stem Cell Rev Rep. 2017-2

[4]
Lysophosphatidic acid enhances survival of human CD34(+) cells in ischemic conditions.

Sci Rep. 2015-11-10

[5]
Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential.

Arch Med Res. 2015-11

[6]
Cooperative and alternate functions for STIM1 and STIM2 in macrophage activation and in the context of inflammation.

Immun Inflamm Dis. 2015-5-12

[7]
ADAMTS9-Mediated Extracellular Matrix Dynamics Regulates Umbilical Cord Vascular Smooth Muscle Differentiation and Rotation.

Cell Rep. 2015-6-16

[8]
Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells.

Stem Cell Res Ther. 2015-4-15

[9]
TGF-β signaling in the control of hematopoietic stem cells.

Blood. 2015-4-1

[10]
Decreased expression of matrix metalloproteinase-1 in the maternal umbilical serum, trophoblasts and decidua leads to preeclampsia.

Exp Ther Med. 2015-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索