Suppr超能文献

利用化学系统生物学进行药物发现:鉴定蛋白质-配体结合网络以解释CETP抑制剂的副作用

Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors.

作者信息

Xie Li, Li Jerry, Xie Lei, Bourne Philip E

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA.

出版信息

PLoS Comput Biol. 2009 May;5(5):e1000387. doi: 10.1371/journal.pcbi.1000387. Epub 2009 May 15.

Abstract

Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl Ester Transfer Protein (CETP) inhibitors. CETP inhibitors are a new class of preventive therapies for the treatment of cardiovascular disease. However, clinical studies indicated that one CETP inhibitor, Torcetrapib, has deadly off-target effects as a result of hypertension, and hence it has been withdrawn from phase III clinical trials. We have identified a panel of off-targets for Torcetrapib and other CETP inhibitors from the human structural genome and map those targets to biological pathways via the literature. The predicted protein-ligand network is consistent with experimental results from multiple sources and reveals that the side-effect of CETP inhibitors is modulated through the combinatorial control of multiple interconnected pathways. Given that combinatorial control is a common phenomenon observed in many biological processes, our findings suggest that adverse drug effects might be minimized by fine-tuning multiple off-target interactions using single or multiple therapies. This work extends the scope of chemogenomics approaches and exemplifies the role that systems biology has in the future of drug discovery.

摘要

系统鉴定蛋白质-药物相互作用网络对于将复杂的药物作用模式与临床适应症相关联至关重要。我们引入了一种新颖的计算策略,用于在全基因组范围内鉴定蛋白质-配体结合谱,并将其应用于阐明与胆固醇酯转运蛋白(CETP)抑制剂的药物不良反应相关的分子机制。CETP抑制剂是一类用于治疗心血管疾病的新型预防性疗法。然而,临床研究表明,一种CETP抑制剂托彻普贝(Torcetrapib)因高血压产生致命的脱靶效应,因此已退出III期临床试验。我们从人类结构基因组中鉴定出了一组托彻普贝和其他CETP抑制剂的脱靶,并通过文献将这些靶点映射到生物途径。预测的蛋白质-配体网络与来自多个来源的实验结果一致,并揭示CETP抑制剂的副作用是通过多个相互连接途径的组合控制来调节的。鉴于组合控制是在许多生物过程中观察到的常见现象,我们的研究结果表明,通过使用单一或多种疗法微调多个脱靶相互作用,可能会将药物不良反应降至最低。这项工作扩展了化学基因组学方法的范围,并例证了系统生物学在药物发现未来中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa04/2676506/2ff33633581d/pcbi.1000387.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验