Goodarzi Aaron A, Noon Angela T, Jeggo Penny A
Genome Damage and Stability Centre, University of Sussex, Brighton, UK.
Biochem Soc Trans. 2009 Jun;37(Pt 3):569-76. doi: 10.1042/BST0370569.
DNA NHEJ (non-homologous end-joining) is the major DNA DSB (double-strand break) repair pathway in mammalian cells. Although NHEJ-defective cell lines show marked DSB-repair defects, cells defective in ATM (ataxia telangiectasia mutated) repair most DSBs normally. Thus NHEJ functions independently of ATM signalling. However, approximately 15% of radiation-induced DSBs are repaired with slow kinetics and require ATM and the nuclease Artemis. DSBs persisting in the presence of an ATM inhibitor, ATMi, localize to heterochromatin, suggesting that ATM is required for repairing DSBs arising within or close to heterochromatin. Consistent with this, we show that siRNA (small interfering RNA) of key heterochromatic proteins, including KAP-1 [KRAB (Krüppel-associated box) domain-associated protein 1], HP1 (heterochromatin protein 1) and HDAC (histone deacetylase) 1/2, relieves the requirement for ATM for DSB repair. Furthermore, ATMi addition to cell lines with genetic alterations that have an impact on heterochromatin, including Suv39H1/2 (suppressor of variegation 3-9 homologue 1/2)-knockout, ICFa (immunodeficiency, centromeric region instability, facial anomalies syndrome type a) and Hutchinson-Guilford progeria cell lines, fails to have an impact on DSB repair. KAP-1 is a highly dose-dependent, transient and ATM-specific substrate, and mutation of the ATM phosphorylation site on KAP-1 influences DSB repair. Collectively, the findings show that ATM functions to overcome the barrier to DSB repair posed by heterochromatin. However, even in the presence of ATM, gamma-H2AX (phosphorylated histone H2AX) foci form on the periphery rather than within heterochromatic centres. Finally, we show that KAP-1's association with heterochromatin is diminished as cells progress through mitosis. We propose that KAP-1 is a critical heterochromatic factor that undergoes specific modifications to promote DSB repair and mitotic progression in a manner that allows localized and transient chromatin relaxation, but precludes significant dismantling of the heterochromatic superstructure.
DNA非同源末端连接(NHEJ)是哺乳动物细胞中主要的DNA双链断裂(DSB)修复途径。虽然NHEJ缺陷细胞系表现出明显的DSB修复缺陷,但共济失调毛细血管扩张突变(ATM)缺陷的细胞通常能正常修复大多数DSB。因此,NHEJ的功能独立于ATM信号传导。然而,约15%的辐射诱导DSB以缓慢的动力学进行修复,并且需要ATM和核酸酶Artemis。在存在ATM抑制剂(ATMi)的情况下持续存在的DSB定位于异染色质,这表明ATM是修复异染色质内或其附近产生的DSB所必需的。与此一致的是,我们发现关键异染色质蛋白的小干扰RNA(siRNA),包括KAP-1 [KRAB(Krüppel相关框)结构域相关蛋白1]、HP1(异染色质蛋白1)和组蛋白去乙酰化酶(HDAC)1/2,可消除DSB修复对ATM的需求。此外,向具有影响异染色质的基因改变的细胞系中添加ATMi,包括Suv39H1/2(斑驳抑制因子3-9同源物1/2)敲除、ICFa(免疫缺陷、着丝粒区域不稳定、面部异常综合征a型)和早老症细胞系,对DSB修复没有影响。KAP-1是一种高度剂量依赖性、瞬时性且对ATM特异的底物,KAP-1上ATM磷酸化位点的突变会影响DSB修复。总的来说,这些发现表明ATM的功能是克服异染色质对DSB修复造成的障碍。然而,即使在有ATM的情况下,γ-H2AX(磷酸化组蛋白H2AX)焦点也形成于异染色质中心的外周而非其内部。最后,我们发现随着细胞进入有丝分裂,KAP-1与异染色质的结合减少。我们提出,KAP-1是一种关键的异染色质因子,它会经历特定修饰,以促进DSB修复和有丝分裂进程,其方式允许局部和瞬时的染色质松弛,但避免异染色质超结构的显著解体。