Suppr超能文献

西班牙萨拉戈萨PM10源解析受体模型的比较

Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain).

作者信息

Callén M S, de la Cruz M T, López J M, Navarro M V, Mastral A M

机构信息

Instituto de Carboquímica, Zaragoza, Spain.

出版信息

Chemosphere. 2009 Aug;76(8):1120-9. doi: 10.1016/j.chemosphere.2009.04.015. Epub 2009 May 13.

Abstract

Receptor models are useful to understand the chemical and physical characteristics of air pollutants by identifying their sources and by estimating contributions of each source to receptor concentrations. In this work, three receptor models based on principal component analysis with absolute principal component scores (PCA-APCS), Unmix and positive matrix factorization (PMF) were applied to study for the first time the apportionment of the airborne particulate matter less or equal than 10microm (PM10) in Zaragoza, Spain, during 1year sampling campaign (2003-2004). The PM10 samples were characterized regarding their concentrations in inorganic components: trace elements and ions and also organic components: polycyclic aromatic hydrocarbons (PAH) not only in the solid phase but also in the gas phase. A comparison of the three receptor models was carried out in order to do a more robust characterization of the PM10. The three models predicted that the major sources of PM10 in Zaragoza were related to natural sources (60%, 75% and 47%, respectively, for PCA-APCS, Unmix and PMF) although anthropogenic sources also contributed to PM10 (28%, 25% and 39%). With regard to the anthropogenic sources, while PCA and PMF allowed high discrimination in the sources identification associated with different combustion sources such as traffic and industry, fossil fuel, biomass and fuel-oil combustion, heavy traffic and evaporative emissions, the Unmix model only allowed the identification of industry and traffic emissions, evaporative emissions and heavy-duty vehicles. The three models provided good correlations between the experimental and modelled PM10 concentrations with major precision and the closest agreement between the PMF and PCA models.

摘要

受体模型有助于通过识别空气污染物的来源并估算每个来源对受体浓度的贡献,来了解空气污染物的化学和物理特性。在本研究中,首次应用了基于绝对主成分得分的主成分分析(PCA - APCS)、Unmix和正定矩阵因子分解(PMF)这三种受体模型,对西班牙萨拉戈萨在1年采样期间(2003 - 2004年)小于或等于10微米的空气颗粒物(PM10)进行源解析。对PM10样本的无机成分(微量元素和离子)以及有机成分(多环芳烃,不仅包括固相的,还包括气相的)的浓度进行了表征。为了更全面地描述PM10,对这三种受体模型进行了比较。三种模型预测,萨拉戈萨PM10的主要来源与自然源有关(PCA - APCS、Unmix和PMF分别为60%、75%和47%),尽管人为源也对PM10有贡献(分别为28%、25%和39%)。关于人为源,PCA和PMF能够很好地区分与不同燃烧源相关的来源,如交通和工业、化石燃料、生物质和燃油燃烧、繁忙交通和蒸发排放,而Unmix模型仅能识别工业和交通排放、蒸发排放以及重型车辆。这三种模型在实验和模拟的PM10浓度之间提供了良好的相关性,具有较高的精度,并且PMF和PCA模型之间的一致性最为接近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验