Suppr超能文献

INTREPID:一个通过进化分析预测功能重要残基的网络服务器。

INTREPID: a web server for prediction of functionally important residues by evolutionary analysis.

作者信息

Sankararaman Sriram, Kolaczkowski Bryan, Sjölander Kimmen

机构信息

Department of Computer Science, University of California, Berkeley, USA.

出版信息

Nucleic Acids Res. 2009 Jul;37(Web Server issue):W390-5. doi: 10.1093/nar/gkp339. Epub 2009 May 13.

Abstract

We present the INTREPID web server for predicting functionally important residues in proteins. INTREPID has been shown to boost the recall and precision of catalytic residue prediction over other sequence-based methods and can be used to identify other types of functional residues. The web server takes an input protein sequence, gathers homologs, constructs a multiple sequence alignment and phylogenetic tree and finally runs the INTREPID method to assign a score to each position. Residues predicted to be functionally important are displayed on homologous 3D structures (where available), highlighting spatial patterns of conservation at various significance thresholds. The INTREPID web server is available at http://phylogenomics.berkeley.edu/intrepid.

摘要

我们展示了用于预测蛋白质中功能重要残基的INTREPID网络服务器。与其他基于序列的方法相比,INTREPID已被证明能提高催化残基预测的召回率和精度,并且可用于识别其他类型的功能残基。该网络服务器接受输入的蛋白质序列,收集同源物,构建多序列比对和系统发育树,最后运行INTREPID方法为每个位置分配一个分数。预测为功能重要的残基会显示在同源三维结构上(若有可用结构),突出显示不同显著性阈值下的保守空间模式。INTREPID网络服务器可在http://phylogenomics.berkeley.edu/intrepid获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2938/2703888/b838dc0f3344/gkp339f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验