Suppr超能文献

单变量模型和双变量模型在总结诊断准确性方面的差异可能不大。

Differences between univariate and bivariate models for summarizing diagnostic accuracy may not be large.

机构信息

Department of Medicine, Durham Veterans Affairs Medical Center, NC 27705, USA.

出版信息

J Clin Epidemiol. 2009 Dec;62(12):1292-300. doi: 10.1016/j.jclinepi.2009.02.007. Epub 2009 May 17.

Abstract

OBJECTIVE

Experts recommend random effects bivariate logitnormal sensitivity and specificity estimates, rather than directly summarized univariate likelihood ratios (LRs) for diagnostic test meta-analyses. We assessed whether bivariate measures might cause different clinical conclusions compared with those from simpler univariate measures.

STUDY DESIGN

From two articles that described the benefits of bivariate random effects measures, we reanalyzed results and compared outcomes to univariate random effects summary estimates of sensitivity, specificity, and LRs. We also reanalyzed data from two published clinical examination studies to assess differences in the two methods.

RESULTS

The median difference between bivariate and univariate methods for sensitivity was 1.5% (range: 0-6%) and for specificity was 1.5% (range: 0-4%). Using a pretest probability of 50%, the median difference in posterior probability was 2.5% (interquartile range: 2.2-3.2%, overall range: 0-11%). For sparse data, continuity adjustment affected the differences. Adding 0.5 to each cell of studies containing at least one cell with zero patients provided the most consistent result.

CONCLUSIONS

Bivariate estimates of sensitivity and specificity generate summary LRs similar to those derived with univariate methods. Our empiric results suggest that recalculating LRs in published research will not likely create dramatic changes as a function of the random effects measure chosen.

摘要

目的

专家建议对诊断性测试荟萃分析使用双变量二项对数正态敏感性和特异性估计值,而不是直接汇总单变量似然比(LR)。我们评估了双变量测量方法是否可能与更简单的单变量测量方法产生不同的临床结论。

研究设计

我们从两篇描述了双变量随机效应测量优势的文章中重新分析了结果,并将结果与敏感性、特异性和 LR 的单变量随机效应汇总估计值进行了比较。我们还重新分析了两篇已发表的临床检查研究的数据,以评估两种方法的差异。

结果

敏感性的双变量和单变量方法之间的中位数差异为 1.5%(范围:0-6%),特异性的中位数差异为 1.5%(范围:0-4%)。使用预测试概率为 50%,后验概率的中位数差异为 2.5%(四分位距:2.2-3.2%,总体范围:0-11%)。对于稀疏数据,连续性调整会影响差异。对至少有一个零患者的单元格添加 0.5,可提供最一致的结果。

结论

敏感性和特异性的双变量估计值生成的汇总 LR 与使用单变量方法得出的 LR 相似。我们的实证结果表明,重新计算发表研究中的 LR 不太可能因选择的随机效应测量方法而产生戏剧性的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验