Thapa Prem S, Ackerson Bruce J, Grischkowsky Daniel R, Flanders Bret N
Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072, USA.
Nanotechnology. 2009 Jun 10;20(23):235307. doi: 10.1088/0957-4484/20/23/235307. Epub 2009 May 18.
This work delineates the mechanism by which directional nanowire growth occurs in the directed electrochemical nanowire assembly (DENA) technique for growing nanowires on micro-electrode arrays. Indium, polythiophene, and polypyrrole nanowires are the subjects of this study. This technique allows the user to specify the growth path without the use of a mechanical template. Nanowire growth from a user-selected electrode to within +/- 3 microm of the straight line path to a second electrode lying within a approximately 140 degrees angular range and a approximately 100 microm radius of the selected electrode is demonstrated. Theory for one-dimensional electrochemical diffusion in the inter-electrode region reveals that screening of the applied voltage is incomplete, allowing a long range voltage component to extend from the biased to the grounded electrode. Numerical analysis of two-dimensional multi-electrode arrays shows that a linear ridge of electric field maxima bridges the gap between selected electrodes but decays in all other directions. The presence of this anisotropic, long range voltage defines the wire growth path and suppresses the inherent tip splitting tendency of amorphous polymeric materials. This technology allows polythiophene and polypyrrole to be grown as wires rather than fractal aggregates or films, establishing DENA as an on-chip approach to both crystalline metallic and amorphous polymeric nanowire growth.