Suppr超能文献

骨骼肌中肌浆网与线粒体的空间偶联

Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle.

作者信息

Dirksen Robert T

机构信息

Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.

出版信息

Appl Physiol Nutr Metab. 2009 Jun;34(3):389-95. doi: 10.1139/H09-044.

Abstract

The skeletal muscle contractile machine is fueled by both calcium and ATP. Calcium ions activate the contractile machinery by binding to troponin C and relieving troponin-tropomyosin inhibition of actinomyosin interaction. ATP binding to myosin during the contractile cycle results in myosin detachment from actin, and energy liberated from subsequent ATP hydrolysis is then used to drive the next contractile cycle. ATP is also used to lower myoplasmic calcium levels during muscle relaxation. Thus, muscle contractility is intimately linked to the proper control of sarcomeric Ca2+ delivery and (or) removal and ATP generation and (or) utilization. In skeletal muscle, the sarcoplasmic reticulum (SR) is the primary regulator of calcium storage, release, and reuptake, while glycolysis and the mitochondria are responsible for cellular ATP production. However, the SR and mitochondrial function in muscle are not independent, as calcium uptake into the mitochondria increases ATP production by stimulating oxidative phosphorylation and mitochondrial ATP production, and production and (or) detoxification of reactive oxygen and nitrogen species (ROS/RNS), in turn, modulates SR calcium release and reuptake. Close spatial Ca2+/ATP/ROS/RNS communication between the SR and mitochondria is facilitated by the structural attachment of mitochondria to the calcium release unit (CRU) by 10 nm of electron-dense tethers. The resultant anchoring of mitochondria to the CRU provides a structural basis for maintaining bidirectional SR-mitochondrial through-space communication during vigorous contraction. This review will consider the degree to which this structural link enables privileged or microdomain communication between the SR and mitochondria in skeletal muscle.

摘要

骨骼肌收缩机制由钙和三磷酸腺苷(ATP)共同驱动。钙离子通过与肌钙蛋白C结合并解除肌钙蛋白 - 原肌球蛋白对肌动球蛋白相互作用的抑制来激活收缩机制。在收缩周期中,ATP与肌球蛋白结合导致肌球蛋白与肌动蛋白分离,随后ATP水解释放的能量用于驱动下一个收缩周期。ATP还用于在肌肉松弛期间降低肌浆钙水平。因此,肌肉收缩性与肌节Ca2 +的释放和(或)清除以及ATP的生成和(或)利用的适当控制密切相关。在骨骼肌中,肌浆网(SR)是钙储存、释放和再摄取的主要调节者,而糖酵解和线粒体负责细胞ATP的产生。然而,肌肉中的SR和线粒体功能并非独立,因为线粒体对钙的摄取通过刺激氧化磷酸化和线粒体ATP产生来增加ATP生成,而活性氧和氮物种(ROS/RNS)的产生和(或)解毒反过来又调节SR钙的释放和再摄取。线粒体通过10纳米的电子致密连接物与钙释放单元(CRU)的结构连接促进了SR和线粒体之间紧密的空间Ca2 + /ATP/ROS/RNS通讯。线粒体与CRU的这种锚定作用为在剧烈收缩期间维持SR - 线粒体之间的双向跨空间通讯提供了结构基础。本综述将探讨这种结构联系在多大程度上使骨骼肌中的SR和线粒体之间实现了特殊或微区通讯。

相似文献

1
Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle.
Appl Physiol Nutr Metab. 2009 Jun;34(3):389-95. doi: 10.1139/H09-044.
2
Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle.
Exerc Sport Sci Rev. 2009 Jan;37(1):29-35. doi: 10.1097/JES.0b013e3181911fa4.
3
Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle.
Cell Calcium. 2015 Jan;57(1):14-24. doi: 10.1016/j.ceca.2014.11.002. Epub 2014 Nov 15.
4
Upregulation of Ca2+ removal in human skeletal muscle: a possible role for Ca2+-dependent priming of mitochondrial ATP synthesis.
Am J Physiol Cell Physiol. 2003 Nov;285(5):C1263-9. doi: 10.1152/ajpcell.00097.2003. Epub 2003 Jul 2.
6
Dietary nitrate increases submaximal SERCA activity and ADP transfer to mitochondria in slow-twitch muscle of female mice.
Am J Physiol Endocrinol Metab. 2022 Aug 1;323(2):E171-E184. doi: 10.1152/ajpendo.00371.2021. Epub 2022 Jun 22.
7
Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat.
J Physiol. 1998 Oct 1;512 ( Pt 1)(Pt 1):97-108. doi: 10.1111/j.1469-7793.1998.097bf.x.
10
ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
J Physiol. 1995 Jan 1;482 ( Pt 1)(Pt 1):109-22. doi: 10.1113/jphysiol.1995.sp020503.

引用本文的文献

4
Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research.
Front Physiol. 2022 Sep 2;13:989796. doi: 10.3389/fphys.2022.989796. eCollection 2022.
5
A controversial issue: Can mitochondria modulate cytosolic calcium and contraction of skeletal muscle fibers?
J Gen Physiol. 2022 Sep 5;154(9). doi: 10.1085/jgp.202213167. Epub 2022 Jul 18.
6
The ischemic model of chronic muscle spasm and pain.
Eur J Transl Myol. 2022 Jan 18;32(1):10323. doi: 10.4081/ejtm.2022.10323.
7
Acute RyR1 Ca leak enhances NADH-linked mitochondrial respiratory capacity.
Nat Commun. 2021 Dec 10;12(1):7219. doi: 10.1038/s41467-021-27422-1.
8
Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass.
J Cachexia Sarcopenia Muscle. 2021 Oct;12(5):1280-1295. doi: 10.1002/jcsm.12743. Epub 2021 Jul 15.
9
Lack of Synergy Between β-Agonist Treatment and a Blockage of Sarcoplasmic Calcium Flow in a Rat Cancer Cachexia Model.
Onco Targets Ther. 2021 Mar 17;14:1953-1959. doi: 10.2147/OTT.S293834. eCollection 2021.

本文引用的文献

1
Mitofusin 2 builds a bridge between ER and mitochondria.
Cell. 2008 Dec 26;135(7):1165-7. doi: 10.1016/j.cell.2008.12.005.
2
Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle.
Exerc Sport Sci Rev. 2009 Jan;37(1):29-35. doi: 10.1097/JES.0b013e3181911fa4.
3
Mitofusin 2 tethers endoplasmic reticulum to mitochondria.
Nature. 2008 Dec 4;456(7222):605-10. doi: 10.1038/nature07534.
4
Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures.
Mol Biol Cell. 2009 Feb;20(3):1058-67. doi: 10.1091/mbc.e08-07-0783. Epub 2008 Nov 26.
6
Skeletal muscle fatigue: cellular mechanisms.
Physiol Rev. 2008 Jan;88(1):287-332. doi: 10.1152/physrev.00015.2007.
7
Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres.
J Physiol. 2008 Jan 1;586(1):197-210. doi: 10.1113/jphysiol.2007.146571. Epub 2007 Nov 1.
8
ER-mitochondria communication. How privileged?
Physiology (Bethesda). 2007 Aug;22:261-8. doi: 10.1152/physiol.00017.2007.
9
Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle.
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5235-40. doi: 10.1073/pnas.0700748104. Epub 2007 Mar 14.
10
Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers.
Am J Physiol Cell Physiol. 2007 Mar;292(3):C1156-66. doi: 10.1152/ajpcell.00397.2006. Epub 2006 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验