Departamento de Biología Molecular, Centro de Biología Molecular '"Severo Ochoa'" (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain.
Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
Cell Death Dis. 2022 Jun 22;13(6):561. doi: 10.1038/s41419-022-05016-z.
Tubular aggregates (TA) are honeycomb-like arrays of sarcoplasmic-reticulum (SR) tubules affecting aged glycolytic fibers of male individuals and inducing severe sarcomere disorganization and muscular pain. TA develop in skeletal muscle from Tubular Aggregate Myopathy (TAM) patients as well as in other disorders including endocrine syndromes, diabetes, and ageing, being their primary cause unknown. Nowadays, there is no cure for TA. Intriguingly, both hypoxia and calcium dyshomeostasis prompt TA formation, pointing to a possible role for mitochondria in their setting. However, a functional link between mitochondrial dysfunctions and TA remains unknown. Herein, we investigate the alteration in muscle-proteome of TAM patients, the molecular mechanism of TA onset and a potential therapy in a preclinical mouse model of the disease. We show that in vivo chronic inhibition of the mitochondrial ATP synthase in muscle causes TA. Upon long-term restrained oxidative phosphorylation (OXPHOS), oxidative soleus experiments a metabolic and structural switch towards glycolytic fibers, increases mitochondrial fission, and activates mitophagy to recycle damaged mitochondria. TA result from the overresponse of the fission controller DRP1, that upregulates the Store-Operate-Calcium-Entry and increases the mitochondria-SR interaction in a futile attempt to buffer calcium overloads upon prolonged OXPHOS inhibition. Accordingly, hypoxic muscles cultured ex vivo show an increase in mitochondria/SR contact sites and autophagic/mitophagic zones, where TA clusters grow around defective mitochondria. Moreover, hypoxia triggered a stronger TA formation upon ATP synthase inhibition, and this effect was reduced by the DRP1 inhibitor mDIVI. Remarkably, the muscle proteome of TAM patients displays similar alterations in mitochondrial dynamics and in ATP synthase contents. In vivo edaravone treatment in mice with restrained OXPHOS restored a healthy phenotype by prompting mitogenesis and mitochondrial fusion. Altogether, our data provide a functional link between the ATP synthase/DRP1 axis and the setting of TA, and repurpose edaravone as a possible treatment for TA-associated disorders.
管状聚集物 (TA) 是肌浆网 (SR) 小管的蜂窝状排列,影响男性个体的糖酵解纤维,并诱导严重的肌节紊乱和肌肉疼痛。TA 不仅出现在管状聚集物肌病 (TAM) 患者的骨骼肌中,还出现在其他疾病中,包括内分泌综合征、糖尿病和衰老,但其主要原因尚不清楚。目前,TA 没有治愈方法。有趣的是,缺氧和钙稳态失调都会促使 TA 形成,这表明线粒体在其形成中可能发挥作用。然而,线粒体功能障碍与 TA 之间的功能联系尚不清楚。本文中,我们研究了 TAM 患者肌肉蛋白质组的改变、TA 发病的分子机制以及疾病的临床前小鼠模型中的潜在治疗方法。我们发现,体内慢性抑制肌肉中的线粒体 ATP 合酶会导致 TA。在长期抑制氧化磷酸化(OXPHOS)的情况下,氧化型比目鱼肌会发生代谢和结构向糖酵解纤维的转变,增加线粒体裂变,并激活自噬以回收受损的线粒体。TA 是由于裂变控制器 DRP1 的过度反应引起的,DRP1 上调了储存操作钙内流并增加了线粒体-SR 相互作用,试图在长时间抑制 OXPHOS 时缓冲钙超载。因此,体外培养的缺氧肌肉显示出线粒体/SR 接触位点和自噬/噬菌斑增加,TA 簇在缺陷线粒体周围生长。此外,DRP1 抑制剂 mDIVI 可减少缺氧对 ATP 合酶抑制后 TA 形成的增强作用。值得注意的是,TAM 患者的肌肉蛋白质组显示在线粒体动力学和 ATP 合酶含量方面存在相似的改变。在限制 OXPHOS 的小鼠体内进行依达拉奉治疗可通过促进有丝分裂和线粒体融合来恢复健康表型。综上所述,我们的数据提供了 ATP 合酶/DRP1 轴与 TA 形成之间的功能联系,并将依达拉奉重新用作治疗 TA 相关疾病的可能方法。