Bailey George S, Reddy Ashok P, Pereira Clifford B, Harttig Ulrich, Baird William, Spitsbergen Jan M, Hendricks Jerry D, Orner Gayle A, Williams David E, Swenberg James A
Department of Environmental and Molecular Toxicology, Marine and Freshwater Biomedical Sciences Center, Linus Pauling Institute, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA.
Chem Res Toxicol. 2009 Jul;22(7):1264-76. doi: 10.1021/tx9000754.
Assessment of human cancer risk from animal carcinogen studies is severely limited by inadequate experimental data at environmentally relevant exposures and by procedures requiring modeled extrapolations many orders of magnitude below observable data. We used rainbow trout, an animal model well-suited to ultralow-dose carcinogenesis research, to explore dose-response down to a targeted 10 excess liver tumors per 10000 animals (ED(001)). A total of 40800 trout were fed 0-225 ppm dibenzo[a,l]pyrene (DBP) for 4 weeks, sampled for biomarker analyses, and returned to control diet for 9 months prior to gross and histologic examination. Suspect tumors were confirmed by pathology, and resulting incidences were modeled and compared to the default EPA LED(10) linear extrapolation method. The study provided observed incidence data down to two above-background liver tumors per 10000 animals at the lowest dose (that is, an unmodeled ED(0002) measurement). Among nine statistical models explored, three were determined to fit the liver data well-linear probit, quadratic logit, and Ryzin-Rai. None of these fitted models is compatible with the LED(10) default assumption, and all fell increasingly below the default extrapolation with decreasing DBP dose. Low-dose tumor response was also not predictable from hepatic DBP-DNA adduct biomarkers, which accumulated as a power function of dose (adducts = 100 x DBP(1.31)). Two-order extrapolations below the modeled tumor data predicted DBP doses producing one excess cancer per million individuals (ED(10)(-6)) that were 500-1500-fold higher than that predicted by the five-order LED(10) extrapolation. These results are considered specific to the animal model, carcinogen, and protocol used. They provide the first experimental estimation in any model of the degree of conservatism that may exist for the EPA default linear assumption for a genotoxic carcinogen.
动物致癌研究对人类癌症风险的评估受到严重限制,一方面是环境相关暴露水平下实验数据不足,另一方面是需要进行低于可观测数据多个数量级的模型外推程序。我们使用虹鳟鱼这一非常适合超低剂量致癌研究的动物模型,来探索低至每10000只动物中有10个额外肝脏肿瘤的剂量反应(ED(001))。总共40800条虹鳟鱼被喂食0 - 225 ppm的二苯并[a,l]芘(DBP),持续4周,采集样本进行生物标志物分析,然后在进行大体和组织学检查前9个月恢复喂食对照饲料。可疑肿瘤通过病理学确认,对所得发病率进行建模,并与美国环保署(EPA)默认的LED(10)线性外推法进行比较。该研究提供了最低剂量下每10000只动物中有两个高于背景水平肝脏肿瘤的观测发病率数据(即未建模的ED(0002)测量值)。在探索的九个统计模型中,确定有三个能很好地拟合肝脏数据——线性概率模型、二次对数模型和里津 - 拉伊模型。这些拟合模型均与LED(10)默认假设不兼容,并且随着DBP剂量降低,所有模型都越来越低于默认外推值。肝脏DBP - DNA加合物生物标志物也无法预测低剂量肿瘤反应,加合物以剂量的幂函数形式累积(加合物 = 100×DBP(1.31))。低于建模肿瘤数据的二阶外推预测的导致每百万个体中有一例额外癌症的DBP剂量(ED(10)(-6))比五阶LED(10)外推预测值高500 - 1500倍。这些结果被认为特定于所使用的动物模型、致癌物和实验方案。它们首次在任何模型中对EPA关于遗传毒性致癌物的默认线性假设可能存在的保守程度进行了实验估计。