Suppr超能文献

带支架动脉模型中近壁血流动力学参数的比较。

Comparison of near-wall hemodynamic parameters in stented artery models.

作者信息

Duraiswamy Nandini, Schoephoerster Richard T, Moore James E

机构信息

Department of Biomedical Engineering, Florida International University, EAS 2610, Miami, FL 33174, USA.

出版信息

J Biomech Eng. 2009 Jun;131(6):061006. doi: 10.1115/1.3118764.

Abstract

Four commercially available stent designs (two balloon expandable-Bx Velocity and NIR, and two self-expanding-Wallstent and Aurora) were modeled to compare the near-wall flow characteristics of stented arteries using computational fluid dynamics simulations under pulsatile flow conditions. A flat rectangular stented vessel model was constructed and simulations were carried out using rigid walls and sinusoidal velocity input (nominal wall shear stress of 10+/-5 dyn/cm2). Mesh independence was determined from convergence (<10%) of the axial wall shear stress (WSS) along the length of the stented model. The flow disturbance was characterized and quantified by the distributions of axial and transverse WSS, WSS gradients, and flow separation parameters. Normalized time-averaged effective WSS during the flow cycle was the smallest for the Wallstent (2.9 dyn/cm2) compared with the others (5.8 dyn/cm2 for the Bx Velocity stent, 5.0 dyn/cm2 for the Aurora stent, and 5.3 dyn/cm2 for the NIR stent). Regions of low mean WSS (<5 dyn/cm2) and elevated WSS gradients (>20 dyn/cm3) were also the largest for the Wallstent compared with the others. WSS gradients were the largest near the struts and remained distinctly nonzero for most of the region between the struts for all stent designs. Fully recirculating regions (as determined by separation parameter) were the largest for the Bx Velocity stent compared with the others. The most hemodynamically favorable stents from our computational analysis were the Bx Velocity and NIR stents, which were slotted-tube balloon-expandable designs. Since clinical data indicate lower restenosis rates for the Bx Velocity and NIR stents compared with the Wallstent, our data suggest that near-wall hemodynamics may predict some aspects of in vivo performance. Further consideration of biomechanics, including solid mechanics, in stent design is warranted.

摘要

对四种市售支架设计(两种球囊扩张型——Bx Velocity和NIR,以及两种自膨胀型——Wallstent和Aurora)进行建模,以便在脉动流条件下使用计算流体动力学模拟来比较植入支架动脉的近壁血流特性。构建了一个扁平矩形的植入支架血管模型,并使用刚性壁和正弦速度输入(名义壁面剪应力为10±5 dyn/cm2)进行模拟。通过沿植入支架模型长度方向的轴向壁面剪应力(WSS)收敛性(<10%)来确定网格独立性。通过轴向和横向WSS分布、WSS梯度以及流动分离参数来表征和量化流动干扰。与其他支架(Bx Velocity支架为5.8 dyn/cm2,Aurora支架为5.0 dyn/cm2,NIR支架为5.3 dyn/cm2)相比,Wallstent在血流周期内的归一化时间平均有效WSS最小(2.9 dyn/cm2)。与其他支架相比,Wallstent的低平均WSS区域(<5 dyn/cm2)和升高的WSS梯度区域(>20 dyn/cm3)也最大。对于所有支架设计,WSS梯度在支柱附近最大,并且在支柱之间的大部分区域内仍明显非零。与其他支架相比,Bx Velocity支架中的完全再循环区域(由分离参数确定)最大。我们的计算分析表明,血流动力学最有利的支架是Bx Velocity和NIR支架,它们是开槽管球囊扩张型设计。由于临床数据表明,与Wallstent相比,Bx Velocity和NIR支架的再狭窄率较低,我们的数据表明近壁血流动力学可能预测体内性能的某些方面。在支架设计中进一步考虑生物力学,包括固体力学,是有必要的。

相似文献

1
Comparison of near-wall hemodynamic parameters in stented artery models.
J Biomech Eng. 2009 Jun;131(6):061006. doi: 10.1115/1.3118764.
3
Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery.
J Appl Physiol (1985). 2004 Jul;97(1):424-30; discussion 416. doi: 10.1152/japplphysiol.01329.2003. Epub 2004 Feb 6.
7
8
Effects of different stent designs on local hemodynamics in stented arteries.
J Biomech. 2008;41(5):1053-61. doi: 10.1016/j.jbiomech.2007.12.005. Epub 2008 Jan 22.
9
Hydrodynamic effects of compliance mismatch in stented arteries.
J Biomech Eng. 2011 Feb;133(2):021008. doi: 10.1115/1.4003319.
10
Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.
Med Eng Phys. 2014 Aug;36(8):1047-56. doi: 10.1016/j.medengphy.2014.05.011. Epub 2014 Jun 20.

引用本文的文献

1
Manufacturing, Processing, and Characterization of Self-Expanding Metallic Stents: A Comprehensive Review.
Bioengineering (Basel). 2024 Sep 29;11(10):983. doi: 10.3390/bioengineering11100983.
2
Patient-specific 3D modeling and fluid dynamic analysis of primary pulmonary vein stenosis.
Front Cardiovasc Med. 2024 Jul 4;11:1432784. doi: 10.3389/fcvm.2024.1432784. eCollection 2024.
5
Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants.
PLoS One. 2016 Feb 23;11(2):e0149178. doi: 10.1371/journal.pone.0149178. eCollection 2016.
6
Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations.
Ann Biomed Eng. 2016 Feb;44(2):315-29. doi: 10.1007/s10439-015-1387-3. Epub 2015 Jul 16.
10
In vitro hemocompatibility of thin film nitinol in stenotic flow conditions.
Biomaterials. 2010 Dec;31(34):8864-71. doi: 10.1016/j.biomaterials.2010.08.014.

本文引用的文献

1
Effects of different stent designs on local hemodynamics in stented arteries.
J Biomech. 2008;41(5):1053-61. doi: 10.1016/j.jbiomech.2007.12.005. Epub 2008 Jan 22.
2
Drug-eluting stents and stent thrombosis: a cause for concern?
Coron Artery Dis. 2006 Dec;17(8):661-5. doi: 10.1097/MCA.0b013e32801122b1.
3
Spatial distribution of platelet deposition in stented arterial models under physiologic flow.
Ann Biomed Eng. 2005 Dec;33(12):1767-77. doi: 10.1007/s10439-005-7598-2.
4
Carotid artery stenting: which stent for which lesion?
Vascular. 2005 Jul-Aug;13(4):205-10. doi: 10.1258/rsmvasc.13.4.205.
7
Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries.
Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2465-75. doi: 10.1152/ajpheart.01107.2004. Epub 2005 Jan 14.
9
Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery.
J Appl Physiol (1985). 2004 Jul;97(1):424-30; discussion 416. doi: 10.1152/japplphysiol.01329.2003. Epub 2004 Feb 6.
10
Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions.
Circulation. 2003 Aug 19;108(7):788-94. doi: 10.1161/01.CIR.0000086926.62288.A6. Epub 2003 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验