Jones Bleddyn
Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK.
J Radiol Prot. 2009 Jun;29(2A):A143-57. doi: 10.1088/0952-4746/29/2A/S10. Epub 2009 May 19.
Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of relative changes in carcinogenesis that incorporate fractionation and relative biological effects (RBE). This alternative modelling approach allows absolute and relative risk estimations per cell and can be extended to tissues. The classical turnover point in carcinogenesis occurring after a single exposure is a feature of the model; also, the dose-response relationship becomes pseudo-linear with extended fractionation and when heterogeneity of the radiosensitivity parameters is introduced; there is also an inverse relationship between dose per fraction and cancer induction. In principle, this new approach might influence the conduct of proton and ion beam therapy, particularly beam placements and fractionation policies. The theoretical implications for future radiotherapy are considerable, but these predictions should be subjected to cellular and tissue experiments that simulate these forms of treatment, including any secondary neutron production in some cases depending on the beam delivery technique, e.g. in tissue equivalent humanoid phantoms using cell transformation techniques. Since the UK has no working high energy particle beam facility over 100 MeV, British scientists would require use of particle beam facilities in Europe, USA or Japan to perform experiments.
(a) 使剂量分布更好地贴合肿瘤;(b) 减少整体剂量暴露,从而将对未受肿瘤影响的正常组织的不必要剂量暴露降至最低。使用X射线的各种类型的适形放疗和调强放疗(IMRT)可以实现(a),而使用质子和离子束的带电粒子治疗(CPT)则可以同时实现(a)和(b),但成本更高。不仅辐射相关的正常组织并发症的长期风险很重要,致癌风险也很重要。可以生成物理剂量分布计划来显示上述技术之间的差异。由于注量传递,IMRT会伴随着低到中等剂量的剂量浴:剂量有效地从指定的危险器官转移到其他区域;因此剂量和风险也随之转移。许多临床医生担心IMRT多年后可能会有额外的致癌风险。CPT减少了身体内的总能量沉积,并在提高生活质量以及治愈癌症方面具有许多潜在优势。对于碳离子,由于核碎裂,在布拉格峰之后存在剂量拖尾;质子则没有这种情况。CPT通常使用较高的线能量转移(其随粒子和能量而变化),这带来了较高的恶性诱导相对风险,但也带来了由相对生物效应概念量化的细胞死亡风险,因此在较高剂量水平下,恶性肿瘤的明显发生应该会减少。标准的线性放射防护模型已被用于表明,根据CPT的位置,致癌风险可降低2至15倍。但标准风险模型未考虑分割照射,有些模型的剂量限制为4 Gy。或者,将线性二次模型和泊松统计同时应用于染色体断裂和细胞杀伤,可以估计纳入分割照射和相对生物效应(RBE)的致癌相对变化。这种替代建模方法可以估计每个细胞的绝对和相对风险,并且可以扩展到组织。单次照射后发生的致癌作用中的经典转折点是该模型的一个特征;此外,随着分割照射的延长以及引入放射敏感性参数的异质性,剂量反应关系会变为伪线性;每次分割剂量与癌症诱导之间也存在反比关系。原则上,这种新方法可能会影响质子和离子束治疗的实施,特别是束流放置和分割照射策略。对未来放疗的理论影响相当大,但这些预测应该通过模拟这些治疗形式的细胞和组织实验来验证,在某些情况下,这包括根据束流传输技术产生的任何次级中子,例如在使用细胞转化技术的组织等效人体模型中。由于英国没有运行中的能量超过100 MeV的高能粒子束设施,英国科学家将需要使用欧洲、美国或日本的粒子束设施来进行实验。