Suppr超能文献

肌肉干细胞的分化而非衰老消除了它们的端粒酶活性。

Differentiation rather than aging of muscle stem cells abolishes their telomerase activity.

作者信息

O'Connor Matthew S, Carlson Morgan E, Conboy Irina M

机构信息

Department of Bioengineering, University of California, Berkeley, CA 94720, USA.

出版信息

Biotechnol Prog. 2009 Jul-Aug;25(4):1130-7. doi: 10.1002/btpr.223.

Abstract

A general feature of stem cells is the ability to routinely proliferate to build, maintain, and repair organ systems. Accordingly, embryonic and germline, as well as some adult stem cells, produce the telomerase enzyme at various levels of expression. Our results show that, while muscle is a largely postmitotic tissue, the muscle stem cells (satellite cells) that maintain this biological system throughout adult life do indeed display robust telomerase activity. Conversely, primary myoblasts (the immediate progeny of satellite cells) quickly and dramatically downregulate telomerase activity. This work thus suggests that satellite cells, and early transient myoblasts, may be more promising therapeutic candidates for regenerative medicine than traditionally utilized myoblast cultures. Muscle atrophy accompanies human aging, and satellite cells endogenous to aged muscle can be triggered to regenerate old tissue by exogenous molecular cues. Therefore, we also examined whether these aged muscle stem cells would produce tissue that is "young" with respect to telomere maintenance. Interestingly, this work shows that the telomerase activity in muscle stem cells is largely retained into old age wintin inbred "long" telomere mice and in wild-derived short telomere mouse strains, and that age-specific telomere shortening is undetectable in the old differentiated muscle fibers of either strain. Summarily, this work establishes that young and old muscle stem cells, but not necessarily their progeny, myoblasts, are likely to produce tissue with normal telomere maintenance when used in molecular and regenerative medicine approaches for tissue repair.

摘要

干细胞的一个普遍特征是能够常规增殖以构建、维持和修复器官系统。因此,胚胎干细胞、生殖系干细胞以及一些成体干细胞会在不同表达水平产生端粒酶。我们的研究结果表明,虽然肌肉在很大程度上是一种终末分化组织,但在成年期维持这一生物系统的肌肉干细胞(卫星细胞)确实表现出强大的端粒酶活性。相反,原代成肌细胞(卫星细胞的直接后代)会迅速且显著地下调端粒酶活性。因此,这项研究表明,与传统使用的成肌细胞培养物相比,卫星细胞和早期短暂存在的成肌细胞可能是再生医学中更有前景的治疗候选细胞。肌肉萎缩伴随人类衰老,衰老肌肉中的内源性卫星细胞可通过外源性分子信号被触发来再生旧组织。因此,我们还研究了这些衰老的肌肉干细胞是否会产生在端粒维持方面“年轻”的组织。有趣的是,这项研究表明,在近交系“长”端粒小鼠和野生来源的短端粒小鼠品系中,肌肉干细胞中的端粒酶活性在很大程度上会保留到老年,并且在这两种品系的老年分化肌纤维中均未检测到特定年龄的端粒缩短。总之,这项研究表明,年轻和衰老的肌肉干细胞,而非其后代成肌细胞,在用于组织修复的分子和再生医学方法中,可能会产生端粒维持正常的组织。

相似文献

1
Differentiation rather than aging of muscle stem cells abolishes their telomerase activity.
Biotechnol Prog. 2009 Jul-Aug;25(4):1130-7. doi: 10.1002/btpr.223.
3
Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.
Nature. 2011 Jan 6;469(7328):102-6. doi: 10.1038/nature09603. Epub 2010 Nov 28.
5
Loss of stem cell regenerative capacity within aged niches.
Aging Cell. 2007 Jun;6(3):371-82. doi: 10.1111/j.1474-9726.2007.00286.x. Epub 2007 Mar 23.
7
Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells.
Cell Transplant. 2011;20(11-12):1693-705. doi: 10.3727/096368911X565001. Epub 2011 Mar 8.
8
Telomere and telomerase in stem cells: relevance in ageing and disease.
Front Biosci (Schol Ed). 2012 Jan 1;4(1):16-30. doi: 10.2741/248.
9
Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers.
J Gerontol A Biol Sci Med Sci. 2014 Jul;69(7):821-30. doi: 10.1093/gerona/glt211. Epub 2014 Jan 13.

引用本文的文献

1
Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging.
Int J Mol Sci. 2024 Feb 2;25(3):1833. doi: 10.3390/ijms25031833.
2
Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation.
Geroscience. 2024 Apr;46(2):1843-1859. doi: 10.1007/s11357-023-00929-9. Epub 2023 Sep 26.
4
Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies.
Pharmaceutics. 2021 Feb 19;13(2):278. doi: 10.3390/pharmaceutics13020278.
6
Murine myoblast migration: influence of replicative ageing and nutrition.
Biogerontology. 2017 Dec;18(6):947-964. doi: 10.1007/s10522-017-9735-3. Epub 2017 Nov 7.
7
Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles.
Stem Cell Reports. 2017 Oct 10;9(4):1328-1341. doi: 10.1016/j.stemcr.2017.08.003. Epub 2017 Sep 7.
8
Systemic Problems: A perspective on stem cell aging and rejuvenation.
Aging (Albany NY). 2015 Oct;7(10):754-65. doi: 10.18632/aging.100819.
10
Muscle wasting in myotonic dystrophies: a model of premature aging.
Front Aging Neurosci. 2015 Jul 9;7:125. doi: 10.3389/fnagi.2015.00125. eCollection 2015.

本文引用的文献

1
Tissue engineering of skeletal muscle.
Tissue Eng. 2007 Nov;13(11):2781-90. doi: 10.1089/ten.2006.0408.
2
Loss of muscle strength during aging studied at the gene level.
Rejuvenation Res. 2007 Sep;10(3):397-405. doi: 10.1089/rej.2007.0597.
3
Skeletal muscle progenitor cells and the role of Pax genes.
C R Biol. 2007 Jun-Jul;330(6-7):530-3. doi: 10.1016/j.crvi.2007.03.015. Epub 2007 Jun 13.
4
Regulating myoblast phenotype through controlled gel stiffness and degradation.
Tissue Eng. 2007 Jul;13(7):1431-42. doi: 10.1089/ten.2006.0356.
6
Telomerase in T lymphocytes: use it and lose it?
J Immunol. 2007 Jun 1;178(11):6689-94. doi: 10.4049/jimmunol.178.11.6689.
8
Stem and progenitor cells in skeletal muscle development, maintenance, and therapy.
Mol Ther. 2007 May;15(5):867-77. doi: 10.1038/mt.sj.6300145. Epub 2007 Mar 27.
9
Loss of stem cell regenerative capacity within aged niches.
Aging Cell. 2007 Jun;6(3):371-82. doi: 10.1111/j.1474-9726.2007.00286.x. Epub 2007 Mar 23.
10
Muscle stem cells in development, regeneration, and disease.
Genes Dev. 2006 Jul 1;20(13):1692-708. doi: 10.1101/gad.1419406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验