Suppr超能文献

一种用于噪声源的健壮隐马尔可夫高斯混合矢量量化器。

A robust hidden Markov Gauss mixture vector quantizer for a noisy source.

作者信息

Pyun Kyungsuk Peter, Lim Johan, Gray Robert M

机构信息

IPG, Hewlett-Packard Company, San Diego, CA 92127, USA.

出版信息

IEEE Trans Image Process. 2009 Jul;18(7):1385-94. doi: 10.1109/TIP.2009.2019433. Epub 2009 May 19.

Abstract

Noise is ubiquitous in real life and changes image acquisition, communication, and processing characteristics in an uncontrolled manner. Gaussian noise and Salt and Pepper noise, in particular, are prevalent in noisy communication channels, camera and scanner sensors, and medical MRI images. It is not unusual for highly sophisticated image processing algorithms developed for clean images to malfunction when used on noisy images. For example, hidden Markov Gauss mixture models (HMGMM) have been shown to perform well in image segmentation applications, but they are quite sensitive to image noise. We propose a modified HMGMM procedure specifically designed to improve performance in the presence of noise. The key feature of the proposed procedure is the adjustment of covariance matrices in Gauss mixture vector quantizer codebooks to minimize an overall minimum discrimination information distortion (MDI). In adjusting covariance matrices, we expand or shrink their elements based on the noisy image. While most results reported in the literature assume a particular noise type, we propose a framework without assuming particular noise characteristics. Without denoising the corrupted source, we apply our method directly to the segmentation of noisy sources. We apply the proposed procedure to the segmentation of aerial images with Salt and Pepper noise and with independent Gaussian noise, and we compare our results with those of the median filter restoration method and the blind deconvolution-based method, respectively. We show that our procedure has better performance than image restoration-based techniques and closely matches to the performance of HMGMM for clean images in terms of both visual segmentation results and error rate.

摘要

噪声在现实生活中无处不在,会以一种不可控的方式改变图像采集、通信及处理的特性。尤其是高斯噪声和椒盐噪声,在有噪声的通信信道、相机和扫描仪传感器以及医学MRI图像中很常见。为处理清晰图像而开发的高度复杂的图像处理算法,在用于有噪声图像时出现故障并不罕见。例如,隐马尔可夫高斯混合模型(HMGMM)在图像分割应用中已显示出良好的性能,但它们对图像噪声相当敏感。我们提出了一种经过改进的HMGMM方法,专门设计用于在存在噪声的情况下提高性能。所提出方法的关键特性是在高斯混合矢量量化码本中调整协方差矩阵,以最小化总体最小鉴别信息失真(MDI)。在调整协方差矩阵时,我们根据有噪声的图像扩展或收缩其元素。虽然文献中报道的大多数结果都假设了特定的噪声类型,但我们提出了一个不假设特定噪声特征的框架。在不对受损源进行去噪的情况下,我们将我们的方法直接应用于有噪声源的分割。我们将所提出的方法应用于带有椒盐噪声和独立高斯噪声的航空图像分割,并分别将我们的结果与中值滤波恢复方法和基于盲反卷积的方法的结果进行比较。我们表明,我们的方法比基于图像恢复的技术具有更好的性能,并且在视觉分割结果和错误率方面都与用于清晰图像的HMGMM的性能非常接近。

相似文献

1
2
Image segmentation using hidden Markov Gauss mixture models.使用隐马尔可夫高斯混合模型的图像分割
IEEE Trans Image Process. 2007 Jul;16(7):1902-11. doi: 10.1109/tip.2007.899612.
3
Turbo segmentation of textured images.纹理图像的快速分割。
IEEE Trans Pattern Anal Mach Intell. 2011 Jan;33(1):16-29. doi: 10.1109/TPAMI.2010.58.
9
A new look to multichannel blind image deconvolution.多通道盲图像去卷积的新视角。
IEEE Trans Image Process. 2009 Jul;18(7):1487-500. doi: 10.1109/TIP.2009.2018566. Epub 2009 May 12.
10
Medical image segmentation using genetic algorithms.使用遗传算法的医学图像分割
IEEE Trans Inf Technol Biomed. 2009 Mar;13(2):166-73. doi: 10.1109/TITB.2008.2007301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验