Suppr超能文献

通过微阵列数据构建和阐明癌细胞周期的动态基因调控网络

Construction and clarification of dynamic gene regulatory network of cancer cell cycle via microarray data.

作者信息

Li Cheng-Wei, Chu Yung-Hsiang, Chen Bor-Sen

机构信息

Lab. of Systems biology, National Tsing Hua University, Hsinchu, 300, Taiwan.

出版信息

Cancer Inform. 2007 Feb 18;2:223-41.

Abstract

BACKGROUND

Cell cycle is an important clue to unravel the mechanism of cancer cells. Recently, expression profiles of cDNA microarray data of Cancer cell cycle are available for the information of dynamic interactions among Cancer cell cycle related genes. Therefore, it is more appealing to construct a dynamic model for gene regulatory network of Cancer cell cycle to gain more insight into the infrastructure of gene regulatory mechanism of cancer cell via microarray data.

RESULTS

Based on the gene regulatory dynamic model and microarray data, we construct the whole dynamic gene regulatory network of Cancer cell cycle. In this study, we trace back upstream regulatory genes of a target gene to infer the regulatory pathways of the gene network by maximum likelihood estimation method. Finally, based on the dynamic regulatory network, we analyze the regulatory abilities and sensitivities of regulatory genes to clarify their roles in the mechanism of Cancer cell cycle.

CONCLUSIONS

Our study presents a systematically iterative approach to discern and characterize the transcriptional regulatory network in Hela cell cycle from the raw expression profiles. The transcription regulatory network in Hela cell cycle can also be confirmed by some experimental reviews. Based on our study and some literature reviews, we can predict and clarify the E2F target genes in G1/S phase, which are crucial for regulating cell cycle progression and tumorigenesis. From the results of the network construction and literature confirmation, we infer that MCM4, MCM5, CDC6, CDC25A, UNG and E2F2 are E2F target genes in Hela cell cycle.

摘要

背景

细胞周期是揭示癌细胞机制的重要线索。最近,癌细胞周期的cDNA微阵列数据的表达谱可用于了解癌细胞周期相关基因之间的动态相互作用信息。因此,构建癌细胞周期基因调控网络的动态模型以通过微阵列数据更深入地了解癌细胞基因调控机制的基础结构,更具吸引力。

结果

基于基因调控动态模型和微阵列数据,我们构建了癌细胞周期的完整动态基因调控网络。在本研究中,我们通过最大似然估计方法追溯目标基因的上游调控基因,以推断基因网络的调控途径。最后,基于动态调控网络,我们分析调控基因的调控能力和敏感性,以阐明它们在癌细胞周期机制中的作用。

结论

我们的研究提出了一种系统的迭代方法,从原始表达谱中识别和表征Hela细胞周期中的转录调控网络。Hela细胞周期中的转录调控网络也可以通过一些实验综述得到证实。基于我们的研究和一些文献综述,我们可以预测和阐明G1/S期的E2F靶基因,这些基因对于调节细胞周期进程和肿瘤发生至关重要。从网络构建和文献证实的结果来看,我们推断MCM4、MCM5、CDC6、CDC25A、UNG和E2F2是Hela细胞周期中的E2F靶基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d1d/2675491/d07f454dbe63/CIN-02-223-g001.jpg

相似文献

2
Quantitative inference of dynamic regulatory pathways via microarray data.
BMC Bioinformatics. 2005 Mar 7;6:44. doi: 10.1186/1471-2105-6-44.
3
Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.
PLoS One. 2010 Apr 21;5(4):e10268. doi: 10.1371/journal.pone.0010268.
10
Analysis of salivary microRNA expression profiles and identification of novel biomarkers in esophageal cancer.
Oncol Lett. 2017 Aug;14(2):1387-1394. doi: 10.3892/ol.2017.6328. Epub 2017 Jun 7.

本文引用的文献

1
Comparative genomics on MCM8 orthologous genes reveals the transcriptional regulation by transcription factor E2F.
Gene. 2006 Feb 15;367:126-34. doi: 10.1016/j.gene.2005.10.002. Epub 2005 Dec 1.
2
BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene.
Cancer Res. 2005 Nov 15;65(22):10265-72. doi: 10.1158/0008-5472.CAN-05-1841.
3
Systems biology, integrative biology, predictive biology.
Cell. 2005 May 20;121(4):505-506. doi: 10.1016/j.cell.2005.04.021.
4
Growth factors and their relationship to neoplastic and paraneoplastic disease.
Eur J Intern Med. 2005 Apr;16(2):83-94. doi: 10.1016/j.ejim.2004.10.011.
5
Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells.
Cancer Cell. 2004 Dec;6(6):625-30. doi: 10.1016/j.ccr.2004.09.033.
6
E2F target genes: unraveling the biology.
Trends Biochem Sci. 2004 Aug;29(8):409-17. doi: 10.1016/j.tibs.2004.06.006.
7
Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle.
Bioinformatics. 2004 Aug 12;20(12):1914-27. doi: 10.1093/bioinformatics/bth178. Epub 2004 Mar 25.
8
E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes.
EMBO J. 2003 Dec 1;22(23):6289-98. doi: 10.1093/emboj/cdg613.
9
Emerging roles for E2F: beyond the G1/S transition and DNA replication.
Cancer Cell. 2003 Apr;3(4):311-6. doi: 10.1016/s1535-6108(03)00080-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验