Suppr超能文献

通过多源数据集成重建癌症细胞周期中的基因调控模块。

Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.

机构信息

Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America.

出版信息

PLoS One. 2010 Apr 21;5(4):e10268. doi: 10.1371/journal.pone.0010268.

Abstract

BACKGROUND

Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells.

RESULTS AND PRINCIPAL FINDINGS

We propose an integrative framework that infers gene regulatory modules from the cell cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology, and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46 transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology mimics the network motif(s) to which the transcription factor was assigned. Inferred network motifs related to eight well-known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison with previously published experimental results.

CONCLUSIONS

We established a robust method that can accurately infer underlying relationships between a given transcription factor and its downstream target genes by integrating different layers of biological data. Our method could also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is involved. Such predictions can then be used to design a more streamlined experimental approach for biological validation. Understanding the dynamics of these modules will shed light on the processes that occur in cancer cells resulting from errors in cell cycle regulation.

摘要

背景

细胞周期的精确调控对所有生物体的生长和发育至关重要。了解细胞周期的调控机制对于揭示许多复杂疾病(尤其是癌症)至关重要。有多种来源的生物数据可用于研究与癌细胞周期相关的许多基因之间的动态相互作用。整合这些有信息和互补的数据来源,可以帮助推断出与癌细胞中潜在基因调控关系具有强相似性的相互一致的基因转录调控网络。

结果与主要发现

我们提出了一个综合框架,通过整合多种生物数据源,包括基因表达谱、基因本体论和分子相互作用,从癌细胞的细胞周期中推断基因调控模块。在 846 个具有潜在细胞周期调控作用的人类基因中,我们确定了 46 个转录因子和 39 个基因本体论组。我们重建了调控模块以推断潜在的调控关系。从互作网络中鉴定出 4 个调控网络基元。通过训练一个递归神经网络来检查每个转录因子与预测的靶基因组之间的关系,该神经网络的拓扑模仿了分配给转录因子的网络基元。通过基因集富集分析、结合位点富集分析以及与先前发表的实验结果进行比较,验证了推断的与八个已知细胞周期基因相关的网络基元。

结论

我们建立了一种稳健的方法,可以通过整合不同层次的生物数据,准确推断给定转录因子与其下游靶基因之间的潜在关系。我们的方法也可以为生物学家预测候选基因参与的调控模块的组成部分提供帮助。这些预测可用于设计更精简的实验方法进行生物学验证。了解这些模块的动态将揭示由于细胞周期调控错误而在癌细胞中发生的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c093/2858157/d067eafe009a/pone.0010268.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验