Enzinger Christian, Dawes Helen, Johansen-Berg Heidi, Wade Derick, Bogdanovic Marko, Collett Jonathan, Guy Claire, Kischka Udo, Ropele Stefan, Fazekas Franz, Matthews Paul M
Department of Neurology, Medical University of Graz, Graz, Austria.
Stroke. 2009 Jul;40(7):2460-7. doi: 10.1161/STROKEAHA.109.550053. Epub 2009 May 21.
The mechanisms underlying motor recovery after stroke are not fully understood. Several studies used functional MRI longitudinally to relate brain activity changes with performance gains of the upper limb after therapy, but research into training-induced recovery of lower limb function has been relatively neglected thus far.
We investigated functional reorganization after 4 weeks of treadmill training with partial body weight support in 18 chronic patients (mean age, 59.9+/-13.5 years) with mild to moderate paresis (Motricity Index affected leg: 77.7+/-10.5; range, 9 to 99) and gait impairment (Functional Ambulation Category: 4.4+/-0.6; range, 3 to 5) due to a single subcortical ischemic stroke using repeated 3.0-T functional MRI and an ankle-dorsiflexion paradigm.
Walking endurance improved after training (2-minute timed walking distance: 121.5+/-39.0 versus pre: 105.1+/-38.1 m; P=0.0001). For active movement of the paretic foot versus rest, greater walking endurance correlated with increased brain activity in the bilateral primary sensorimotor cortices, the cingulate motor areas, and the caudate nuclei bilaterally and in the thalamus of the affected hemisphere.
Despite the strong subcortical contributions to gait control, rehabilitation-associated walking improvements are associated with cortical activation changes. This is similar to findings in upper limb rehabilitation with some differences in the involved cortical areas. We observed bihemispheric activation increases with greater recovery both in cortical and subcortical regions with movement of the paretic foot. However, although the dorsal premotor cortex appears to play an important role in recovery of hand movements, evidence for the involvement of this region in lower extremity recovery was not found.
中风后运动恢复的潜在机制尚未完全明确。多项研究纵向运用功能磁共振成像(fMRI)来关联脑活动变化与治疗后上肢功能的改善情况,但迄今为止,针对训练诱导的下肢功能恢复的研究相对较少。
我们对18例慢性患者(平均年龄59.9±13.5岁)进行了研究,这些患者因单次皮质下缺血性中风导致轻度至中度轻瘫(患侧下肢运动功能指数:77.7±10.5;范围9至99)和步态障碍(功能性步行分类:4.4±0.6;范围3至5)。采用3.0-T功能磁共振成像重复扫描以及踝关节背屈范式,对患者进行为期4周的减重平板训练后的功能重组情况展开调查。
训练后步行耐力得到改善(2分钟定时步行距离:训练后为121.5±39.0米,训练前为105.1±38.1米;P = 0.0001)。与静息状态相比,患侧足部主动运动时,步行耐力增强与双侧初级感觉运动皮层、扣带回运动区、双侧尾状核以及患侧半球丘脑的脑活动增加相关。
尽管皮质下结构对步态控制有重要作用,但康复相关的步行改善与皮质激活变化有关。这与上肢康复的研究结果相似,不过涉及的皮质区域存在一些差异。我们观察到,随着患侧足部运动,皮质和皮质下区域恢复程度越高,双侧半球激活增加越明显。然而,尽管背侧运动前皮层似乎在手部运动恢复中起重要作用,但未发现该区域参与下肢恢复的证据。