Lawrenz Morgan, Baron Riccardo, McCammon J Andrew
Department of Chemistry & Biochemistry, Center for Theoretical Biological Physics, Department of Pharmacology, and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365.
J Chem Theory Comput. 2009 Apr 14;5(4):1106-1116. doi: 10.1021/ct800559d. Epub 2009 Mar 25.
Free-energy changes are essential physicochemical quantities for understanding most biochemical processes. Yet, the application of accurate thermodynamic-integration (TI) computation to biological and macromolecular systems is limited by finite-sampling artifacts. In this paper, we employ independent-trajectories thermodynamic-integration (IT-TI) computation to estimate improved free-energy changes and their uncertainties for (bio)molecular systems. IT-TI aids sampling statistics of the thermodynamic macrostates for flexible associating partners by ensemble averaging of multiple, independent simulation trajectories. We study peramivir (PVR) inhibition of the H5N1 avian influenza virus neuraminidase flexible receptor (N1). Binding site loops 150 and 119 are highly mobile, as revealed by N1-PVR 20-ns molecular dynamics. Due to such heterogeneous sampling, standard TI binding free-energy estimates span a rather large free-energy range, from a 19% underestimation to a 29% overestimation of the experimental reference value (-62.2 +/- 1.8 kJ mol(-1)). Remarkably, our IT-TI binding free-energy estimate (-61.1 +/- 5.4 kJ mol(-1)) agrees with a 2% relative difference. In addition, IT-TI runs provide a statistics-based free-energy uncertainty for the process of interest. Using approximately 800 ns of overall sampling, we investigate N1-PVR binding determinants by IT-TI alchemical modifications of PVR moieties. These results emphasize the dominant electrostatic contribution, particularly through the N1 E277-PVR guanidinium interaction. Future drug development may be also guided by properly tuning ligand flexibility and hydrophobicity. IT-TI will allow estimation of relative free energies for systems of increasing size, with improved reliability by employing large-scale distributed computing.
自由能变化是理解大多数生化过程的重要物理化学量。然而,精确的热力学积分(TI)计算在生物和大分子系统中的应用受到有限采样伪像的限制。在本文中,我们采用独立轨迹热力学积分(IT-TI)计算来估计(生物)分子系统中改进的自由能变化及其不确定性。IT-TI通过对多个独立模拟轨迹进行系综平均,辅助对柔性缔合伙伴的热力学宏观状态进行采样统计。我们研究了帕拉米韦(PVR)对H5N1禽流感病毒神经氨酸酶柔性受体(N1)的抑制作用。N1-PVR的20纳秒分子动力学表明,结合位点环150和119具有高度的流动性。由于这种异质采样,标准TI结合自由能估计值跨越了相当大的自由能范围,从比实验参考值(-62.2±1.8 kJ mol⁻¹)低19%到高29%。值得注意的是,我们的IT-TI结合自由能估计值(-61.1±5.4 kJ mol⁻¹)的相对差异为2%。此外,IT-TI运行提供了基于统计的感兴趣过程的自由能不确定性。通过对PVR部分进行IT-TI炼金术修饰,使用大约800纳秒的总体采样,我们研究了N1-PVR的结合决定因素。这些结果强调了主要的静电贡献,特别是通过N1 E277-PVR胍相互作用。未来的药物开发也可能通过适当调整配体的灵活性和疏水性来指导。IT-TI将允许估计更大尺寸系统的相对自由能,通过采用大规模分布式计算提高可靠性。